Semantic UV mapping to improve texture inpainting for indoor scenes
- URL: http://arxiv.org/abs/2407.09248v1
- Date: Fri, 12 Jul 2024 13:21:25 GMT
- Title: Semantic UV mapping to improve texture inpainting for indoor scenes
- Authors: Jelle Vermandere, Maarten Bassier, Maarten Vergauwen,
- Abstract summary: This work aims to improve texture inpainting after clutter removal in scanned indoor meshes.
This is achieved with a new UV mapping pre-processing step which leverages semantic information of indoor scenes to more accurately match the UV islands with the 3D representation of distinct structural elements like walls and floors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work aims to improve texture inpainting after clutter removal in scanned indoor meshes. This is achieved with a new UV mapping pre-processing step which leverages semantic information of indoor scenes to more accurately match the UV islands with the 3D representation of distinct structural elements like walls and floors. Semantic UV Mapping enriches classic UV unwrapping algorithms by not only relying on geometric features but also visual features originating from the present texture. The segmentation improves the UV mapping and simultaneously simplifies the 3D geometric reconstruction of the scene after the removal of loose objects. Each segmented element can be reconstructed separately using the boundary conditions of the adjacent elements. Because this is performed as a pre-processing step, other specialized methods for geometric and texture reconstruction can be used in the future to improve the results even further.
Related papers
- Texture-GS: Disentangling the Geometry and Texture for 3D Gaussian Splatting Editing [79.10630153776759]
3D Gaussian splatting, emerging as a groundbreaking approach, has drawn increasing attention for its capabilities of high-fidelity reconstruction and real-time rendering.
We propose a novel approach, namely Texture-GS, to disentangle the appearance from the geometry by representing it as a 2D texture mapped onto the 3D surface.
Our method not only facilitates high-fidelity appearance editing but also achieves real-time rendering on consumer-level devices.
arXiv Detail & Related papers (2024-03-15T06:42:55Z) - Nuvo: Neural UV Mapping for Unruly 3D Representations [61.87715912587394]
Existing UV mapping algorithms operate on geometry produced by state-of-the-art 3D reconstruction and generation techniques.
We present a UV mapping method designed to operate on geometry produced by 3D reconstruction and generation techniques.
arXiv Detail & Related papers (2023-12-11T18:58:38Z) - Texture Generation on 3D Meshes with Point-UV Diffusion [86.69672057856243]
We present Point-UV diffusion, a coarse-to-fine pipeline that marries the denoising diffusion model with UV mapping to generate high-quality texture images in UV space.
Our method can process meshes of any genus, generating diversified, geometry-compatible, and high-fidelity textures.
arXiv Detail & Related papers (2023-08-21T06:20:54Z) - TUVF: Learning Generalizable Texture UV Radiance Fields [32.417062841312976]
We introduce Texture UV Radiance Fields (TUVF) that generate textures in a learnable UV sphere space rather than directly on the 3D shape.
TUVF allows the texture to be disentangled from the underlying shape and transferable to other shapes that share the same UV space.
We perform our experiments on synthetic and real-world object datasets.
arXiv Detail & Related papers (2023-05-04T17:58:05Z) - TEXTure: Text-Guided Texturing of 3D Shapes [71.13116133846084]
We present TEXTure, a novel method for text-guided editing, editing, and transfer of textures for 3D shapes.
We define a trimap partitioning process that generates seamless 3D textures without requiring explicit surface textures.
arXiv Detail & Related papers (2023-02-03T13:18:45Z) - FFHQ-UV: Normalized Facial UV-Texture Dataset for 3D Face Reconstruction [46.3392612457273]
This dataset contains over 50,000 high-quality texture UV-maps with even illuminations, neutral expressions, and cleaned facial regions.
Our pipeline utilizes the recent advances in StyleGAN-based facial image editing approaches.
Experiments show that our method improves the reconstruction accuracy over state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-25T03:21:05Z) - AUV-Net: Learning Aligned UV Maps for Texture Transfer and Synthesis [78.17671694498185]
We propose AUV-Net which learns to embed 3D surfaces into a 2D aligned UV space.
As a result, textures are aligned across objects, and can thus be easily synthesized by generative models of images.
The learned UV mapping and aligned texture representations enable a variety of applications including texture transfer, texture synthesis, and textured single view 3D reconstruction.
arXiv Detail & Related papers (2022-04-06T21:39:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.