Experimental photon addition and subtraction in multi-mode and entangled optical fields
- URL: http://arxiv.org/abs/2407.09269v1
- Date: Fri, 12 Jul 2024 13:52:46 GMT
- Title: Experimental photon addition and subtraction in multi-mode and entangled optical fields
- Authors: Kishore Thapliyal, Jan Peřina Jr., Ondřej Haderka, Václav Michálek, Radek Machulka,
- Abstract summary: Multiple photon addition and subtraction is mutually compared using one experimental setup.
Twin beams with tight spatial correlations detected by an intensified CCD camera with high spatial resolution are used.
Up to three photons are added or subtracted to arrive at the nonclassical and non-Gaussian states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple photon addition and subtraction applied to multi-mode thermal and sub-Poissonian fields as well as twin beams is mutually compared using one experimental setup. Twin beams with tight spatial correlations detected by an intensified CCD camera with high spatial resolution are used to prepare the initial fields. Up to three photons are added or subtracted to arrive at the nonclassical and non-Gaussian states. Only the photon-subtracted thermal states remain classical. In general, the experimental photon-added states exhibit greater nonclassicality and non-Gaussianity than the comparable photon-subtracted states. Once photons are added or subtracted in twin beams, both processes result in comparable properties of the obtained states owing to twin-beam photon pairing.
Related papers
- Experimental preparation of multiphoton-added coherent states of light [0.0]
Conditional addition of photons is a crucial tool for optical quantum state engineering.
We demonstrate the addition of one, two, and three photons to input coherent states with various amplitudes.
Results pave the way towards the experimental realization of complex optical quantum operations.
arXiv Detail & Related papers (2024-05-16T19:06:52Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Super-resolution enhancement in bi-photon spatial mode demultiplexin [0.0]
Imaging systems measuring intensity in the far field succumb to Rayleigh's curse, a resolution limitation dictated by the finite aperture of the optical system.
Many proof-of-principle and some two-dimensional imaging experiments have shown that, by using spatial mode demultiplexing (SPADE), the field information collected is maximal.
arXiv Detail & Related papers (2022-12-20T17:40:46Z) - Probing many-body correlations using quantum-cascade correlation
spectroscopy [0.0]
The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics.
Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved.
Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength.
arXiv Detail & Related papers (2022-12-18T09:51:12Z) - Multiphoton Correlations between Quantum Images [0.8701566919381222]
Experimental demonstrations of entangled quantum images produced through parametric downconversion have so far been confined to studying two photon correlations.
Here we show that multiphoton correlations between quantum images are accessible experimentally and exhibit many new features including being sensitive to the phase of the bi-photon wavefunction.
arXiv Detail & Related papers (2022-11-16T05:07:52Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Un-symmetric photon subtraction: a method for generating high photon
number states and their relevance to loss estimation at ultimate quantum
limit [0.0]
We have studied theoretical un-symmetric multi-photon subtracted twin beam state and demonstrated a method for generating states that resembles to high photon number states.
A crucial point is high non-classicality is obtained by photon subtraction when mean photons per mode of twin beam state is low.
arXiv Detail & Related papers (2021-10-03T23:28:47Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Generalization of Second-Order Quasi-Phase Matching in Whispering
Gallery Mode Resonators Using Berry Phase [77.34726150561087]
Second order nonlinearities in whispering gallery mode resonators are investigated for their many applications.
We first detail the case of Zinc-blende materials and then generalize this theory to other crystal symmetries relevant for integrated photonics.
arXiv Detail & Related papers (2020-06-23T12:35:12Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.