論文の概要: Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning
- arxiv url: http://arxiv.org/abs/2407.09281v2
- Date: Mon, 5 Aug 2024 16:16:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 20:28:55.166752
- Title: Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning
- Title(参考訳): 人間の行動決定の予測と理解:大規模言語モデルと認知事例に基づく学習から
- Authors: Thuy Ngoc Nguyen, Kasturi Jamale, Cleotilde Gonzalez,
- Abstract要約: 大きな言語モデル(LLM)は、様々なタスクにまたがってその能力を実証している。
本稿では,LLMの推論と生成能力を利用して,2つの逐次意思決定タスクにおける人間の行動を予測する。
我々は,LLMの性能を,人間の経験的意思決定を模倣した認知的インスタンスベース学習モデルと比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated their capabilities across various tasks, from language translation to complex reasoning. Understanding and predicting human behavior and biases are crucial for artificial intelligence (AI) assisted systems to provide useful assistance, yet it remains an open question whether these models can achieve this. This paper addresses this gap by leveraging the reasoning and generative capabilities of the LLMs to predict human behavior in two sequential decision-making tasks. These tasks involve balancing between exploitative and exploratory actions and handling delayed feedback, both essential for simulating real-life decision processes. We compare the performance of LLMs with a cognitive instance-based learning (IBL) model, which imitates human experiential decision-making. Our findings indicate that LLMs excel at rapidly incorporating feedback to enhance prediction accuracy. In contrast, the cognitive IBL model better accounts for human exploratory behaviors and effectively captures loss aversion bias, i.e., the tendency to choose a sub-optimal goal with fewer step-cost penalties rather than exploring to find the optimal choice, even with limited experience. The results highlight the benefits of integrating LLMs with cognitive architectures, suggesting that this synergy could enhance the modeling and understanding of complex human decision-making patterns.
- Abstract(参考訳): 大きな言語モデル(LLM)は、言語翻訳から複雑な推論まで、様々なタスクでその能力を実証している。
人間の行動とバイアスの理解と予測は、人工知能(AI)支援システムに有用な支援を提供する上で不可欠である。
本稿では,LLMの推論と生成能力を活用して,2つの逐次意思決定タスクにおける人間の行動を予測することによって,このギャップを解消する。
これらのタスクには、搾取行動と探索行動のバランスをとることと、実際の意思決定プロセスのシミュレーションに不可欠な遅延フィードバックを扱うことが含まれる。
我々は,LLMの性能を,人間の経験的意思決定を模倣した認知的インスタンスベース学習(IBL)モデルと比較した。
以上の結果から,LLMはフィードバックを迅速に取り入れて予測精度を向上させることが示唆された。
対照的に、認知的IBLモデルは、人間の探索行動をよりよく説明し、損失回避バイアスを効果的に捉えている。
その結果,LLMを認知的アーキテクチャに統合することで,複雑な人間の意思決定パターンのモデリングと理解が促進される可能性が示唆された。
関連論文リスト
- Causality for Large Language Models [37.10970529459278]
数十億または数兆のパラメータを持つ大規模言語モデル(LLM)は、膨大なデータセットでトレーニングされており、一連の言語タスクで前例のない成功を収めている。
近年の研究では、LLMは因果オウムとして機能し、因果知識を真に理解したり応用したりすることなくリサイクリングすることができることが強調されている。
本調査は, ライフサイクルのすべての段階において, 因果性がどのようにLCMを強化するかを検討することを目的としている。
論文 参考訳(メタデータ) (2024-10-20T07:22:23Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Unlocking Structured Thinking in Language Models with Cognitive Prompting [0.0]
本研究では,大規模言語モデルにおける問題解決を導く新しい手法として認知的プロンプトを提案する。
メタのLLaMAモデルにおいて認知的プロンプトの有効性を評価する。
論文 参考訳(メタデータ) (2024-10-03T19:53:47Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice [4.029252551781513]
本稿では,認知モデルとしての大規模言語モデルの有用性を高める新しい手法を提案する。
生態学的に有効な算術的データセットに基づいて事前訓練されたLLMは、従来の認知モデルよりも人間の行動を予測する。
論文 参考訳(メタデータ) (2024-05-29T17:37:14Z) - Explaining Large Language Models Decisions with Shapley Values [1.223779595809275]
大規模言語モデル(LLM)は、人間の行動や認知過程をシミュレートするエキサイティングな可能性を開いた。
しかし, LLMを人体用スタンドインとして活用する妥当性は, いまだに不明である。
本稿では,モデルの出力に対する各プロンプト成分の相対的寄与を定量化するために,シェープリー値に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T22:49:43Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
ヒューリスティック分析推論(HAR)戦略は、モデル決定のための合理化のコヒーレンスを大幅に改善する。
以上の結果から, PLM推論の一貫性と信頼性を効果的に向上できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-24T19:46:04Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。