CFaults: Model-Based Diagnosis for Fault Localization in C Programs with Multiple Test Cases
- URL: http://arxiv.org/abs/2407.09337v1
- Date: Fri, 12 Jul 2024 15:14:49 GMT
- Title: CFaults: Model-Based Diagnosis for Fault Localization in C Programs with Multiple Test Cases
- Authors: Pedro Orvalho, Mikoláš Janota, Vasco Manquinho,
- Abstract summary: This paper introduces a novel fault localization approach for C programs with multiple faults.
CFaults leverages Model-Based Diagnosis (MBD) with multiple observations and aggregates all failing test cases into a unified MaxSAT formula.
Experimental results on two benchmark sets of C programs, TCAS and C-Pack-IPAs, show that CFaults is faster than other FBFL approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Debugging is one of the most time-consuming and expensive tasks in software development. Several formula-based fault localization (FBFL) methods have been proposed, but they fail to guarantee a set of diagnoses across all failing tests or may produce redundant diagnoses that are not subset-minimal, particularly for programs with multiple faults. This paper introduces a novel fault localization approach for C programs with multiple faults. CFaults leverages Model-Based Diagnosis (MBD) with multiple observations and aggregates all failing test cases into a unified MaxSAT formula. Consequently, our method guarantees consistency across observations and simplifies the fault localization procedure. Experimental results on two benchmark sets of C programs, TCAS and C-Pack-IPAs, show that CFaults is faster than other FBFL approaches like BugAssist and SNIPER. Moreover, CFaults only generates subset-minimal diagnoses of faulty statements, whereas the other approaches tend to enumerate redundant diagnoses.
Related papers
- Scalable Similarity-Aware Test Suite Minimization with Reinforcement Learning [6.9290255098776425]
TripRL produces a diverse reduced test suite with high test effectiveness.
We show that TripRL's runtime scales linearly with the magnitude of the Multi-Criteria Test Suite Minimization problem.
arXiv Detail & Related papers (2024-08-24T08:43:03Z) - A Sparse Bayesian Learning for Diagnosis of Nonstationary and Spatially
Correlated Faults with Application to Multistation Assembly Systems [3.4991031406102238]
This article proposes a novel fault diagnosis method: clustering spatially correlated sparse Bayesian learning (CSSBL)
The proposed method's efficacy is provided through numerical and real-world case studies utilizing an actual autobody assembly system.
The generalizability of the proposed method allows the technique to be applied in fault diagnosis in other domains, including communication and healthcare systems.
arXiv Detail & Related papers (2023-10-20T23:56:53Z) - FastDiagP: An Algorithm for Parallelized Direct Diagnosis [64.65251961564606]
FastDiag is a typical direct diagnosis algorithm that supports diagnosis calculation without predetermining conflicts.
We propose a novel algorithm, so-called FastDiagP, which is based on the idea of speculative programming.
This mechanism helps to provide consistency checks with fast answers and boosts the algorithm's runtime performance.
arXiv Detail & Related papers (2023-05-11T16:26:23Z) - Fully Autonomous Programming with Large Language Models [0.9558392439655015]
Current approaches to program synthesis with Large Language Models (LLMs) exhibit a "near miss syndrome"
We use OpenAI Codex as the LLM and Program Synthesis Benchmark 2 as a database of problem descriptions and tests for evaluation.
The resulting framework outperforms both conventional usage of Codex without the repair phase and traditional genetic programming approaches.
arXiv Detail & Related papers (2023-04-20T16:12:05Z) - Hard Nominal Example-aware Template Mutual Matching for Industrial
Anomaly Detection [74.9262846410559]
textbfHard Nominal textbfExample-aware textbfTemplate textbfMutual textbfMatching (HETMM)
textitHETMM aims to construct a robust prototype-based decision boundary, which can precisely distinguish between hard-nominal examples and anomalies.
arXiv Detail & Related papers (2023-03-28T17:54:56Z) - Fault-Aware Neural Code Rankers [64.41888054066861]
We propose fault-aware neural code rankers that can predict the correctness of a sampled program without executing it.
Our fault-aware rankers can significantly increase the pass@1 accuracy of various code generation models.
arXiv Detail & Related papers (2022-06-04T22:01:05Z) - Mitigating the Mutual Error Amplification for Semi-Supervised Object
Detection [92.52505195585925]
We propose a Cross Teaching (CT) method, aiming to mitigate the mutual error amplification by introducing a rectification mechanism of pseudo labels.
In contrast to existing mutual teaching methods that directly treat predictions from other detectors as pseudo labels, we propose the Label Rectification Module (LRM)
arXiv Detail & Related papers (2022-01-26T03:34:57Z) - An Efficient Diagnosis Algorithm for Inconsistent Constraint Sets [68.8204255655161]
We introduce a divide-and-conquer based diagnosis algorithm (FastDiag) which identifies minimal sets of faulty constraints in an over-constrained problem.
We compare FastDiag with the conflict-directed calculation of hitting sets and present an in-depth performance analysis.
arXiv Detail & Related papers (2021-02-17T19:55:42Z) - Sound, Complete, Linear-Space, Best-First Diagnosis Search [0.0]
We propose RBF-HS, a diagnostic search method based on Korf's well-known RBFS algorithm.
RBF-HS can enumerate an arbitrary fixed number of fault explanations in best-first order within linear space bounds.
arXiv Detail & Related papers (2020-09-25T12:49:49Z) - Are Ensemble Classifiers Powerful Enough for the Detection and Diagnosis
of Intermediate-Severity Faults? [9.1591191545173]
Intermediate-Severity (IS) faults present milder symptoms compared to severe faults.
The lack of IS fault examples in the training data can pose severe risks to Fault Detection and Diagnosis (FDD) methods.
We discuss how to design more effective ensemble models for detecting and diagnosing IS faults.
arXiv Detail & Related papers (2020-07-07T02:05:04Z) - Lower bounds in multiple testing: A framework based on derandomized
proxies [107.69746750639584]
This paper introduces an analysis strategy based on derandomization, illustrated by applications to various concrete models.
We provide numerical simulations of some of these lower bounds, and show a close relation to the actual performance of the Benjamini-Hochberg (BH) algorithm.
arXiv Detail & Related papers (2020-05-07T19:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.