A Sparse Bayesian Learning for Diagnosis of Nonstationary and Spatially
Correlated Faults with Application to Multistation Assembly Systems
- URL: http://arxiv.org/abs/2310.16058v1
- Date: Fri, 20 Oct 2023 23:56:53 GMT
- Title: A Sparse Bayesian Learning for Diagnosis of Nonstationary and Spatially
Correlated Faults with Application to Multistation Assembly Systems
- Authors: Jihoon Chung and Zhenyu Kong
- Abstract summary: This article proposes a novel fault diagnosis method: clustering spatially correlated sparse Bayesian learning (CSSBL)
The proposed method's efficacy is provided through numerical and real-world case studies utilizing an actual autobody assembly system.
The generalizability of the proposed method allows the technique to be applied in fault diagnosis in other domains, including communication and healthcare systems.
- Score: 3.4991031406102238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sensor technology developments provide a basis for effective fault diagnosis
in manufacturing systems. However, the limited number of sensors due to
physical constraints or undue costs hinders the accurate diagnosis in the
actual process. In addition, time-varying operational conditions that generate
nonstationary process faults and the correlation information in the process
require to consider for accurate fault diagnosis in the manufacturing systems.
This article proposes a novel fault diagnosis method: clustering spatially
correlated sparse Bayesian learning (CSSBL), and explicitly demonstrates its
applicability in a multistation assembly system that is vulnerable to the above
challenges. Specifically, the method is based on a practical assumption that it
will likely have a few process faults (sparse). In addition, the hierarchical
structure of CSSBL has several parameterized prior distributions to address the
above challenges. As posterior distributions of process faults do not have
closed form, this paper derives approximate posterior distributions through
Variational Bayes inference. The proposed method's efficacy is provided through
numerical and real-world case studies utilizing an actual autobody assembly
system. The generalizability of the proposed method allows the technique to be
applied in fault diagnosis in other domains, including communication and
healthcare systems.
Related papers
- Generalized Out-of-distribution Fault Diagnosis (GOOFD) via Internal Contrastive Learning [8.583116999933731]
We propose a Generalized Out-of-distribution Fault Diagnosis framework to integrate diagnosis subtasks.
A unified fault diagnosis method based on internal contrastive learning and Mahalanobis distance is put forward to underpin the proposed framework.
Our proposed method can be applied to multiple faults diagnosis tasks and achieve better performance than the existing single-task methods.
arXiv Detail & Related papers (2023-06-27T07:50:25Z) - An Evidential Real-Time Multi-Mode Fault Diagnosis Approach Based on
Broad Learning System [26.733033919978364]
We propose a novel approach to achieve real-time multi-mode fault diagnosis in industrial systems.
Our approach uses an extended evidence reasoning (ER) algorithm to fuse information and merge outputs from different base classifiers.
The effectiveness of the proposed approach is demonstrated on the multi-mode Tennessee Eastman process dataset.
arXiv Detail & Related papers (2023-04-29T04:42:44Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - A Novel Sparse Bayesian Learning and Its Application to Fault Diagnosis
for Multistation Assembly Systems [5.225026952905702]
This paper addresses the problem of fault diagnosis in multistation assembly systems.
Fault diagnosis is to identify process faults that cause the excessive dimensional variation of the product using dimensional measurements.
arXiv Detail & Related papers (2022-10-28T14:47:51Z) - Machine learning-based approach for online fault Diagnosis of Discrete
Event System [0.0]
The problem is the online diagnosis of Automated Production Systems with sensors and actuators delivering discrete binary signals.
We propose a Machine Learning-based approach of a diagnostic system.
arXiv Detail & Related papers (2022-10-24T08:56:13Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
arXiv Detail & Related papers (2021-10-17T13:42:37Z) - Probabilistic Bearing Fault Diagnosis Using Gaussian Process with
Tailored Feature Extraction [10.064000794573756]
Rolling bearings are subject to various faults due to its long-time operation under harsh environment.
Current deep learning methods perform the bearing fault diagnosis in the form of deterministic classification.
We develop a probabilistic fault diagnosis framework that can account for the uncertainty effect in prediction.
arXiv Detail & Related papers (2021-09-19T18:34:29Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.