論文の概要: Is Contrasting All You Need? Contrastive Learning for the Detection and Attribution of AI-generated Text
- arxiv url: http://arxiv.org/abs/2407.09364v1
- Date: Fri, 12 Jul 2024 15:44:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-15 22:58:40.430035
- Title: Is Contrasting All You Need? Contrastive Learning for the Detection and Attribution of AI-generated Text
- Title(参考訳): コントラストは必要なものなのか?AI生成テキストの検出と属性に対するコントラスト学習
- Authors: Lucio La Cava, Davide Costa, Andrea Tagarelli,
- Abstract要約: WhosAIは、与えられた入力テキストが人間かAIによって生成されたかを予測するために設計された3重ネットワークコントラスト学習フレームワークである。
提案するフレームワークは,チューリングテストとオーサリングの両タスクにおいて,優れた結果が得られることを示す。
- 参考スコア(独自算出の注目度): 4.902089836908786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The significant progress in the development of Large Language Models has contributed to blurring the distinction between human and AI-generated text. The increasing pervasiveness of AI-generated text and the difficulty in detecting it poses new challenges for our society. In this paper, we tackle the problem of detecting and attributing AI-generated text by proposing WhosAI, a triplet-network contrastive learning framework designed to predict whether a given input text has been generated by humans or AI and to unveil the authorship of the text. Unlike most existing approaches, our proposed framework is conceived to learn semantic similarity representations from multiple generators at once, thus equally handling both detection and attribution tasks. Furthermore, WhosAI is model-agnostic and scalable to the release of new AI text-generation models by incorporating their generated instances into the embedding space learned by our framework. Experimental results on the TuringBench benchmark of 200K news articles show that our proposed framework achieves outstanding results in both the Turing Test and Authorship Attribution tasks, outperforming all the methods listed in the TuringBench benchmark leaderboards.
- Abstract(参考訳): 大規模言語モデルの開発における大きな進歩は、人間とAIが生成するテキストの区別を曖昧にすることに貢献している。
AI生成テキストの普及と、それを検出することの難しさは、私たちの社会に新たな課題をもたらします。
本稿では,与えられた入力テキストが人間やAIによって生成されたかどうかを予測し,テキストの著者名を明らかにするために設計された3重ネットワークコントラスト学習フレームワークであるWhosAIを提案することによって,AI生成テキストの検出と帰属の問題に取り組む。
既存のほとんどのアプローチとは異なり,提案フレームワークは複数のジェネレータから同時に意味的類似性表現を学習し,検出タスクと帰属タスクの両方を均等に扱うように設計されている。
さらに、WhosAIはモデルに依存しず、フレームワークによって学習された埋め込み空間に生成されたインスタンスを組み込むことで、新しいAIテキスト生成モデルのリリースにスケーラブルである。
200Kのニュース記事のTuringBenchベンチマークの実験結果から,提案フレームワークはチューリングテストとオーサシップ属性タスクの両方において,優れた結果が得られ,TuringBenchベンチマークのリーダーボードに記載されているすべてのメソッドよりも優れた結果が得られた。
関連論文リスト
- DeTeCtive: Detecting AI-generated Text via Multi-Level Contrastive Learning [24.99797253885887]
このタスクを達成するための鍵は、異なる著者のスタイルを区別することにある、と我々は主張する。
DeTeCtiveは,マルチタスクの補助的,マルチレベルのコントラスト学習フレームワークである。
我々の手法はテキストエンコーダと互換性がある。
論文 参考訳(メタデータ) (2024-10-28T12:34:49Z) - SONAR: A Synthetic AI-Audio Detection Framework and Benchmark [59.09338266364506]
SONARはAI-Audio Detection FrameworkとBenchmarkの合成である。
最先端のAI合成聴覚コンテンツを識別するための総合的な評価を提供することを目的としている。
従来のモデルとファンデーションベースのディープフェイク検出システムの両方で、AIオーディオ検出を均一にベンチマークする最初のフレームワークである。
論文 参考訳(メタデータ) (2024-10-06T01:03:42Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - Enhancing Text Authenticity: A Novel Hybrid Approach for AI-Generated Text Detection [8.149808049643344]
本稿では,TF-IDF技術と高度な機械学習モデルを組み合わせた新しいハイブリッド手法を提案する。
提案手法は既存手法と比較して優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-06-01T10:21:54Z) - Who Writes the Review, Human or AI? [0.36498648388765503]
本研究では,AIによる書評と人間による書評を正確に区別する手法を提案する。
提案手法は移動学習を利用して,異なるトピック間で生成したテキストを識別する。
実験の結果、元のテキストのソースを検出でき、精度96.86%に達することが示されている。
論文 参考訳(メタデータ) (2024-05-30T17:38:44Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
我々は、新しいフレームワーク、パラフレーズテキストスパン検出(PTD)を提案する。
PTDは、テキスト内でパラフレーズ付きテキストを識別することを目的としている。
パラフレーズ付きテキストスパン検出のための専用データセットであるPASTEDを構築した。
論文 参考訳(メタデータ) (2024-05-21T11:22:27Z) - ToBlend: Token-Level Blending With an Ensemble of LLMs to Attack AI-Generated Text Detection [6.27025292177391]
ToBlendはトークンレベルのアンサンブルテキスト生成手法であり、現在のAIコンテンツ検出アプローチの堅牢性に挑戦する。
ToBlendは、主要なAIコンテンツ検出手法の性能を著しく低下させる。
論文 参考訳(メタデータ) (2024-02-17T02:25:57Z) - Evaluating the Efficacy of Hybrid Deep Learning Models in Distinguishing
AI-Generated Text [0.0]
私の研究は、AI生成テキストと人間の文章を正確に区別するために、最先端のハイブリッドディープラーニングモデルを使用することを調査します。
さまざまなソースからAIと人文からなる慎重に選択されたデータセットを利用し、それぞれに指示をタグ付けして、堅牢な方法論を適用しました。
論文 参考訳(メタデータ) (2023-11-27T06:26:53Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy [52.765898203824975]
本研究では,条件付きテキスト生成と入力コンテキストの特性を考慮した意味認識型透かしアルゴリズムを提案する。
実験結果から,提案手法は様々なテキスト生成モデルに対して大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2023-07-25T20:24:22Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。