Tracking Patterns in Toxicity and Antisocial Behavior Over User Lifetimes on Large Social Media Platforms
- URL: http://arxiv.org/abs/2407.09365v1
- Date: Fri, 12 Jul 2024 15:45:02 GMT
- Title: Tracking Patterns in Toxicity and Antisocial Behavior Over User Lifetimes on Large Social Media Platforms
- Authors: Katy Blumer, Jon Kleinberg,
- Abstract summary: We analyze toxicity over a 14-year time span on nearly 500 million comments from Reddit and Wikipedia.
We find that the most toxic behavior on Reddit exhibited in aggregate by the most active users, and the most toxic behavior on Wikipedia exhibited in aggregate by the least active users.
- Score: 0.2630859234884723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An increasing amount of attention has been devoted to the problem of "toxic" or antisocial behavior on social media. In this paper we analyze such behavior at very large scales: we analyze toxicity over a 14-year time span on nearly 500 million comments from Reddit and Wikipedia, grounded in two different proxies for toxicity. At the individual level, we analyze users' toxicity levels over the course of their time on the site, and find a striking reversal in trends: both Reddit and Wikipedia users tended to become less toxic over their life cycles on the site in the early (pre-2013) history of the site, but more toxic over their life cycles in the later (post-2013) history of the site. We also find that toxicity on Reddit and Wikipedia differ in a key way, with the most toxic behavior on Reddit exhibited in aggregate by the most active users, and the most toxic behavior on Wikipedia exhibited in aggregate by the least active users. Finally, we consider the toxicity of discussion around widely-shared pieces of content, and find that the trends for toxicity in discussion about content bear interesting similarities with the trends for toxicity in discussion by users.
Related papers
- Taming Toxicity or Fueling It? The Great Ban`s Role in Shifting Toxic User Behavior and Engagement [0.6918368994425961]
We evaluate the effectiveness of The Great Ban, one of the largest deplatforming interventions carried out by Reddit.
We analyzed 53M comments shared by nearly 34K users.
We found that 15.6% of the moderated users abandoned the platform while the remaining ones decreased their overall toxicity by 4.1%.
arXiv Detail & Related papers (2024-11-06T16:34:59Z) - Comprehensive Assessment of Toxicity in ChatGPT [49.71090497696024]
We evaluate the toxicity in ChatGPT by utilizing instruction-tuning datasets.
prompts in creative writing tasks can be 2x more likely to elicit toxic responses.
Certain deliberately toxic prompts, designed in earlier studies, no longer yield harmful responses.
arXiv Detail & Related papers (2023-11-03T14:37:53Z) - ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in
Real-World User-AI Conversation [43.356758428820626]
We introduce ToxicChat, a novel benchmark based on real user queries from an open-source chatbots.
Our systematic evaluation of models trained on existing toxicity datasets has shown their shortcomings when applied to this unique domain of ToxicChat.
In the future, ToxicChat can be a valuable resource to drive further advancements toward building a safe and healthy environment for user-AI interactions.
arXiv Detail & Related papers (2023-10-26T13:35:41Z) - Twits, Toxic Tweets, and Tribal Tendencies: Trends in Politically Polarized Posts on Twitter [5.161088104035108]
We explore the role that partisanship and affective polarization play in contributing to toxicity on an individual level and a topic level on Twitter/X.
After collecting 89.6 million tweets from 43,151 Twitter/X users, we determine how several account-level characteristics, including partisanship, predict how often users post toxic content.
arXiv Detail & Related papers (2023-07-19T17:24:47Z) - Analyzing Norm Violations in Live-Stream Chat [49.120561596550395]
We study the first NLP study dedicated to detecting norm violations in conversations on live-streaming platforms.
We define norm violation categories in live-stream chats and annotate 4,583 moderated comments from Twitch.
Our results show that appropriate contextual information can boost moderation performance by 35%.
arXiv Detail & Related papers (2023-05-18T05:58:27Z) - Sub-Standards and Mal-Practices: Misinformation's Role in Insular, Polarized, and Toxic Interactions on Reddit [5.161088104035108]
We show that comments on articles from unreliable news websites are posted more often in right-leaning subreddits.
As the toxicity of subreddits increases, users are more likely to comment on posts from known unreliable websites.
arXiv Detail & Related papers (2023-01-27T01:32:22Z) - User Engagement and the Toxicity of Tweets [1.1339580074756188]
We analyze a random sample of more than 85,300 Twitter conversations to examine differences between toxic and non-toxic conversations.
We find that toxic conversations, those with at least one toxic tweet, are longer but have fewer individual users contributing to the dialogue compared to the non-toxic conversations.
We also find a relationship between the toxicity of the first reply to a toxic tweet and the toxicity of the conversation.
arXiv Detail & Related papers (2022-11-07T20:55:22Z) - Twitter Users' Behavioral Response to Toxic Replies [1.2387676601792899]
We studied the impact of toxicity on users' online behavior on Twitter.
We found that toxicity victims show a combination of the following behavioral reactions: avoidance, revenge, countermeasures, and negotiation.
Our results can assist further studies in developing more effective detection and intervention methods for reducing the negative consequences of toxicity on social media.
arXiv Detail & Related papers (2022-10-24T17:36:58Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
We investigate the effect of annotator identities (who) and beliefs (why) on toxic language annotations.
We consider posts with three characteristics: anti-Black language, African American English dialect, and vulgarity.
Our results show strong associations between annotator identity and beliefs and their ratings of toxicity.
arXiv Detail & Related papers (2021-11-15T18:58:20Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models [93.151822563361]
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment.
We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration.
arXiv Detail & Related papers (2020-09-24T03:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.