Twits, Toxic Tweets, and Tribal Tendencies: Trends in Politically Polarized Posts on Twitter
- URL: http://arxiv.org/abs/2307.10349v2
- Date: Wed, 30 Oct 2024 18:43:57 GMT
- Title: Twits, Toxic Tweets, and Tribal Tendencies: Trends in Politically Polarized Posts on Twitter
- Authors: Hans W. A. Hanley, Zakir Durumeric,
- Abstract summary: We explore the role that partisanship and affective polarization play in contributing to toxicity on an individual level and a topic level on Twitter/X.
After collecting 89.6 million tweets from 43,151 Twitter/X users, we determine how several account-level characteristics, including partisanship, predict how often users post toxic content.
- Score: 5.161088104035108
- License:
- Abstract: Social media platforms are often blamed for exacerbating political polarization and worsening public dialogue. Many claim that hyperpartisan users post pernicious content, slanted to their political views, inciting contentious and toxic conversations. However, what factors are actually associated with increased online toxicity and negative interactions? In this work, we explore the role that partisanship and affective polarization play in contributing to toxicity both on an individual user level and a topic level on Twitter/X. To do this, we train and open-source a DeBERTa-based toxicity detector with a contrastive objective that outperforms the Google Jigsaw Perspective Toxicity detector on the Civil Comments test dataset. Then, after collecting 89.6 million tweets from 43,151 Twitter/X users, we determine how several account-level characteristics, including partisanship along the US left-right political spectrum and account age, predict how often users post toxic content. Fitting a Generalized Additive Model to our data, we find that the diversity of views and the toxicity of the other accounts with which that user engages has a more marked effect on their own toxicity. Namely, toxic comments are correlated with users who engage with a wider array of political views. Performing topic analysis on the toxic content posted by these accounts using the large language model MPNet and a version of the DP-Means clustering algorithm, we find similar behavior across 5,288 individual topics, with users becoming more toxic as they engage with a wider diversity of politically charged topics.
Related papers
- Characterization of Political Polarized Users Attacked by Language Toxicity on Twitter [3.0367864044156088]
This study aims to provide a first exploration of the potential language toxicity flow among Left, Right and Center users.
More than 500M Twitter posts were examined.
It was discovered that Left users received much more toxic replies than Right and Center users.
arXiv Detail & Related papers (2024-07-17T10:49:47Z) - Analyzing Norm Violations in Live-Stream Chat [49.120561596550395]
We study the first NLP study dedicated to detecting norm violations in conversations on live-streaming platforms.
We define norm violation categories in live-stream chats and annotate 4,583 moderated comments from Twitch.
Our results show that appropriate contextual information can boost moderation performance by 35%.
arXiv Detail & Related papers (2023-05-18T05:58:27Z) - Sub-Standards and Mal-Practices: Misinformation's Role in Insular, Polarized, and Toxic Interactions on Reddit [5.161088104035108]
We show that comments on articles from unreliable news websites are posted more often in right-leaning subreddits.
As the toxicity of subreddits increases, users are more likely to comment on posts from known unreliable websites.
arXiv Detail & Related papers (2023-01-27T01:32:22Z) - Non-Polar Opposites: Analyzing the Relationship Between Echo Chambers
and Hostile Intergroup Interactions on Reddit [66.09950457847242]
We study the activity of 5.97M Reddit users and 421M comments posted over 13 years.
We create a typology of relationships between political communities based on whether their users are toxic to each other.
arXiv Detail & Related papers (2022-11-25T22:17:07Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
We investigate the effect of annotator identities (who) and beliefs (why) on toxic language annotations.
We consider posts with three characteristics: anti-Black language, African American English dialect, and vulgarity.
Our results show strong associations between annotator identity and beliefs and their ratings of toxicity.
arXiv Detail & Related papers (2021-11-15T18:58:20Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Designing Toxic Content Classification for a Diversity of Perspectives [15.466547856660803]
We survey 17,280 participants to understand how user expectations for what constitutes toxic content differ across demographics, beliefs, and personal experiences.
We find that groups historically at-risk of harassment are more likely to flag a random comment drawn from Reddit, Twitter, or 4chan as toxic.
We show how current one-size-fits-all toxicity classification algorithms, like the Perspective API from Jigsaw, can improve in accuracy by 86% on average through personalized model tuning.
arXiv Detail & Related papers (2021-06-04T16:45:15Z) - Right and left, partisanship predicts (asymmetric) vulnerability to
misinformation [71.46564239895892]
We analyze the relationship between partisanship, echo chambers, and vulnerability to online misinformation by studying news sharing behavior on Twitter.
We find that vulnerability to misinformation is most strongly influenced by partisanship for both left- and right-leaning users.
arXiv Detail & Related papers (2020-10-04T01:36:14Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
COVID-19 has sparked racism and hate on social media targeted towards Asian communities.
We study the evolution and spread of anti-Asian hate speech through the lens of Twitter.
We create COVID-HATE, the largest dataset of anti-Asian hate and counterspeech spanning 14 months.
arXiv Detail & Related papers (2020-05-25T21:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.