The Effectiveness of Curvature-Based Rewiring and the Role of Hyperparameters in GNNs Revisited
- URL: http://arxiv.org/abs/2407.09381v2
- Date: Mon, 4 Nov 2024 13:30:38 GMT
- Title: The Effectiveness of Curvature-Based Rewiring and the Role of Hyperparameters in GNNs Revisited
- Authors: Floriano Tori, Vincent Holst, Vincent Ginis,
- Abstract summary: Message passing is the dominant paradigm in Graph Neural Networks (GNNs)
Recent efforts have focused on graph rewiring techniques, which disconnect the input graph originating from the data and the computational graph, on which message passing is performed.
While oversquashing has been demonstrated in synthetic datasets, in this work we reevaluate the performance gains that curvature-based rewiring brings to real-world datasets.
- Score: 0.7373617024876725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Message passing is the dominant paradigm in Graph Neural Networks (GNNs). The efficiency of message passing, however, can be limited by the topology of the graph. This happens when information is lost during propagation due to being oversquashed when travelling through bottlenecks. To remedy this, recent efforts have focused on graph rewiring techniques, which disconnect the input graph originating from the data and the computational graph, on which message passing is performed. A prominent approach for this is to use discrete graph curvature measures, of which several variants have been proposed, to identify and rewire around bottlenecks, facilitating information propagation. While oversquashing has been demonstrated in synthetic datasets, in this work we reevaluate the performance gains that curvature-based rewiring brings to real-world datasets. We show that in these datasets, edges selected during the rewiring process are not in line with theoretical criteria identifying bottlenecks. This implies they do not necessarily oversquash information during message passing. Subsequently, we demonstrate that SOTA accuracies on these datasets are outliers originating from sweeps of hyperparameters -- both the ones for training and dedicated ones related to the rewiring algorithm -- instead of consistent performance gains. In conclusion, our analysis nuances the effectiveness of curvature-based rewiring in real-world datasets and brings a new perspective on the methods to evaluate GNN accuracy improvements.
Related papers
- Graph Structure Learning with Interpretable Bayesian Neural Networks [10.957528713294874]
We introduce novel iterations with independently interpretable parameters.
These parameters influence characteristics of the estimated graph, such as edge sparsity.
After unrolling these iterations, prior knowledge over such graph characteristics shape prior distributions.
Fast execution and parameter efficiency allow for high-fidelity posterior approximation.
arXiv Detail & Related papers (2024-06-20T23:27:41Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
This study addresses the limitations of the traditional analysis of message-passing, central to graph learning, by defining em textbfgeneralized propagation with directed and weighted graphs.
We include a preliminary exploration of learned propagation patterns in datasets, a first in the field.
arXiv Detail & Related papers (2024-02-13T14:13:17Z) - GraphGuard: Detecting and Counteracting Training Data Misuse in Graph
Neural Networks [69.97213941893351]
The emergence of Graph Neural Networks (GNNs) in graph data analysis has raised critical concerns about data misuse during model training.
Existing methodologies address either data misuse detection or mitigation, and are primarily designed for local GNN models.
This paper introduces a pioneering approach called GraphGuard, to tackle these challenges.
arXiv Detail & Related papers (2023-12-13T02:59:37Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
Graph neural networks (GNNs) have exhibited exceptional efficacy in a diverse array of applications.
The sheer size of large-scale graphs presents a significant challenge to real-time inference with GNNs.
We propose an online propagation framework and two novel node-adaptive propagation methods.
arXiv Detail & Related papers (2023-10-17T05:03:00Z) - Mitigating Over-Smoothing and Over-Squashing using Augmentations of Forman-Ricci Curvature [1.1126342180866644]
We propose a rewiring technique based on Augmented Forman-Ricci curvature (AFRC), a scalable curvature notation.
We prove that AFRC effectively characterizes over-smoothing and over-squashing effects in message-passing GNNs.
arXiv Detail & Related papers (2023-09-17T21:43:18Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
We propose a novel CONtrastiVe Graph ClustEring network with Reliable AugmenTation (CONVERT)
In our method, the data augmentations are processed by the proposed reversible perturb-recover network.
To further guarantee the reliability of semantics, a novel semantic loss is presented to constrain the network.
arXiv Detail & Related papers (2023-08-17T13:07:09Z) - Understanding over-squashing and bottlenecks on graphs via curvature [17.359098638324546]
Over-squashing is a phenomenon where the number of $k$-hop neighbors grows rapidly with $k$.
We introduce a new edge-based curvature and prove that negatively curved edges are responsible for over-squashing.
We also propose and experimentally test a curvature-based rewiring method to alleviate the over-squashing.
arXiv Detail & Related papers (2021-11-29T13:27:56Z) - A Graph Data Augmentation Strategy with Entropy Preserving [11.886325179121226]
We introduce a novel graph entropy definition as a quantitative index to evaluate feature information among a graph.
Under considerations of preserving graph entropy, we propose an effective strategy to generate training data using a perturbed mechanism.
Our proposed approach significantly enhances the robustness and generalization ability of GCNs during the training process.
arXiv Detail & Related papers (2021-07-13T12:58:32Z) - Training Robust Graph Neural Networks with Topology Adaptive Edge
Dropping [116.26579152942162]
Graph neural networks (GNNs) are processing architectures that exploit graph structural information to model representations from network data.
Despite their success, GNNs suffer from sub-optimal generalization performance given limited training data.
This paper proposes Topology Adaptive Edge Dropping to improve generalization performance and learn robust GNN models.
arXiv Detail & Related papers (2021-06-05T13:20:36Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.