MUSCLE: A Model Update Strategy for Compatible LLM Evolution
- URL: http://arxiv.org/abs/2407.09435v2
- Date: Thu, 3 Oct 2024 21:10:13 GMT
- Title: MUSCLE: A Model Update Strategy for Compatible LLM Evolution
- Authors: Jessica Echterhoff, Fartash Faghri, Raviteja Vemulapalli, Ting-Yao Hu, Chun-Liang Li, Oncel Tuzel, Hadi Pouransari,
- Abstract summary: Large Language Models (LLMs) are regularly updated to enhance performance.
Instance-level degradation (instance regression) of performance from one model version to the next can interfere with a user's mental model of the capabilities of a particular language model.
We propose a training strategy to minimize the extent of instance regression in model updates.
- Score: 29.032461144831053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are regularly updated to enhance performance, typically through changes in data or architecture. Within the update process, developers often prioritize improving overall performance metrics, paying less attention to maintaining compatibility with earlier model versions. Instance-level degradation (instance regression) of performance from one model version to the next can interfere with a user's mental model of the capabilities of a particular language model. Users having to adapt their mental model with every update can lead to dissatisfaction, especially when the new model has degraded compared to a prior version for a known use case (model update regression). We find that when pretrained LLM base models are updated, fine-tuned user-facing downstream task adapters experience negative flips -- previously correct instances are now predicted incorrectly. We observe model update regression between different model versions on a diverse set of tasks and models, even when the downstream task training procedures remain identical. We argue for the importance of maintaining model update compatibility during updates, and present evaluation metrics designed specifically for generative tasks, while also being applicable to discriminative tasks. We propose a training strategy to minimize the extent of instance regression in model updates, involving training of a compatibility adapter that can enhance task fine-tuned language models. We show negative flips reduce by up to 40% e.g. when updating Llama 1 to Llama 2 with our proposed method.
Related papers
- OLMES: A Standard for Language Model Evaluations [64.85905119836818]
We propose OLMES, a practical, open standard for reproducible language model evaluations.
We identify and review the varying factors in evaluation practices adopted by the community.
OLMES supports meaningful comparisons between smaller base models that require the unnatural "cloze" formulation of multiple-choice questions.
arXiv Detail & Related papers (2024-06-12T17:37:09Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Robustness-Congruent Adversarial Training for Secure Machine Learning
Model Updates [13.911586916369108]
We show that misclassifications in machine-learning models can affect robustness to adversarial examples.
We propose a technique, named robustness-congruent adversarial training, to address this issue.
We show that our algorithm and, more generally, learning with non-regression constraints, provides a theoretically-grounded framework to train consistent estimators.
arXiv Detail & Related papers (2024-02-27T10:37:13Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Revision Transformers: Instructing Language Models to Change their
Values [21.645935518842744]
Current transformer language models (LM) are large-scale models with billions of parameters.
We propose the Revision Transformer (RiT) to facilitate easy model updating.
The specific combination of a large-scale pre-trained LM that inherently but also diffusely encodes world knowledge with a clear-structured revision engine makes it possible to update the model's knowledge with little effort and the help of user interaction.
arXiv Detail & Related papers (2022-10-19T07:05:06Z) - Measuring and Reducing Model Update Regression in Structured Prediction
for NLP [31.86240946966003]
backward compatibility requires that the new model does not regress on cases that were correctly handled by its predecessor.
This work studies model update regression in structured prediction tasks.
We propose a simple and effective method, Backward-Congruent Re-ranking (BCR), by taking into account the characteristics of structured output.
arXiv Detail & Related papers (2022-02-07T07:04:54Z) - Forward Compatible Training for Representation Learning [53.300192863727226]
backward compatible training (BCT) modifies training of the new model to make its representations compatible with those of the old model.
BCT can significantly hinder the performance of the new model.
In this work, we propose a new learning paradigm for representation learning: forward compatible training (FCT)
arXiv Detail & Related papers (2021-12-06T06:18:54Z) - Mismatched No More: Joint Model-Policy Optimization for Model-Based RL [172.37829823752364]
We propose a single objective for jointly training the model and the policy, such that updates to either component increases a lower bound on expected return.
Our objective is a global lower bound on expected return, and this bound becomes tight under certain assumptions.
The resulting algorithm (MnM) is conceptually similar to a GAN.
arXiv Detail & Related papers (2021-10-06T13:43:27Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - Self-Updating Models with Error Remediation [0.5156484100374059]
We propose a framework, Self-Updating Models with Error Remediation (SUMER), in which a deployed model updates itself as new data becomes available.
A key component of SUMER is the notion of error remediation as self-labeled data can be susceptible to the propagation of errors.
We find that self-updating models (SUMs) generally perform better than models that do not attempt to self-update when presented with additional previously-unseen data.
arXiv Detail & Related papers (2020-05-19T23:09:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.