MOS: Model Surgery for Pre-Trained Model-Based Class-Incremental Learning
- URL: http://arxiv.org/abs/2412.09441v1
- Date: Thu, 12 Dec 2024 16:57:20 GMT
- Title: MOS: Model Surgery for Pre-Trained Model-Based Class-Incremental Learning
- Authors: Hai-Long Sun, Da-Wei Zhou, Hanbin Zhao, Le Gan, De-Chuan Zhan, Han-Jia Ye,
- Abstract summary: Class-Incremental Learning (CIL) requires models to continually acquire knowledge of new classes without forgetting old ones.
Existing work seeks to utilize lightweight components to adjust the model.
We propose MOdel Surgery (MOS) to rescue the model from forgetting previous knowledge.
- Score: 62.78292142632335
- License:
- Abstract: Class-Incremental Learning (CIL) requires models to continually acquire knowledge of new classes without forgetting old ones. Despite Pre-trained Models (PTMs) have shown excellent performance in CIL, catastrophic forgetting still occurs as the model learns new concepts. Existing work seeks to utilize lightweight components to adjust the PTM, while the forgetting phenomenon still comes from {\em parameter and retrieval} levels. Specifically, iterative updates of the model result in parameter drift, while mistakenly retrieving irrelevant modules leads to the mismatch during inference. To this end, we propose MOdel Surgery (MOS) to rescue the model from forgetting previous knowledge. By training task-specific adapters, we continually adjust the PTM to downstream tasks. To mitigate parameter-level forgetting, we present an adapter merging approach to learn task-specific adapters, which aims to bridge the gap between different components while reserve task-specific information. Besides, to address retrieval-level forgetting, we introduce a training-free self-refined adapter retrieval mechanism during inference, which leverages the model's inherent ability for better adapter retrieval. By jointly rectifying the model with those steps, MOS can robustly resist catastrophic forgetting in the learning process. Extensive experiments on seven benchmark datasets validate MOS's state-of-the-art performance. Code is available at: https://github.com/sun-hailong/AAAI25-MOS
Related papers
- ATLAS: Adapter-Based Multi-Modal Continual Learning with a Two-Stage Learning Strategy [12.150065431702055]
We propose a multi-modal continual learning scheme that consists of experience-based learning and novel knowledge expansion.
Our method is proficient for continual learning. It expands the distribution of representation upstream while also minimizing the negative impact of forgetting previous tasks.
arXiv Detail & Related papers (2024-10-14T13:29:42Z) - Adaptive Adapter Routing for Long-Tailed Class-Incremental Learning [55.384428765798496]
New data exhibits a long-tailed distribution, such as e-commerce platform reviews.
This necessitates continuous model learning imbalanced data without forgetting.
We introduce AdaPtive Adapter RouTing (APART) as an exemplar-free solution for LTCIL.
arXiv Detail & Related papers (2024-09-11T17:52:00Z) - Class-Incremental Learning with CLIP: Adaptive Representation Adjustment and Parameter Fusion [10.322832012497722]
Class-incremental learning is a challenging problem, where the goal is to train a model that can classify data from an increasing number of classes over time.
With the advancement of vision-language pre-trained models such as CLIP, they demonstrate good generalization ability.
However, further adaptation to downstream tasks by simply fine-tuning the model leads to severe forgetting.
Most existing works with pre-trained models assume that the forgetting of old classes is uniform when the model acquires new knowledge.
arXiv Detail & Related papers (2024-07-19T09:20:33Z) - Semantically-Shifted Incremental Adapter-Tuning is A Continual ViTransformer [44.10678347943115]
Class-incremental learning (CIL) aims to enable models to continuously learn new classes while overcoming catastrophic forgetting.
In this paper, we revisit different parameter-efficient tuning (PET) methods within the context of continual learning.
We observe that adapter tuning demonstrates superiority over prompt-based methods, even without parameter expansion in each learning session.
arXiv Detail & Related papers (2024-03-29T05:23:12Z) - Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
We propose ExpAndable Subspace Ensemble (EASE) for PTM-based CIL.
We train a distinct lightweight adapter module for each new task, aiming to create task-specific subspaces.
Our prototype complement strategy synthesizes old classes' new features without using any old class instance.
arXiv Detail & Related papers (2024-03-18T17:58:13Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
We present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models.
Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters.
To preserve the zero-shot recognition capability of vision-language models, we introduce a Distribution Discriminative Auto-Selector.
arXiv Detail & Related papers (2024-03-18T08:00:23Z) - Efficient Adaptive Human-Object Interaction Detection with
Concept-guided Memory [64.11870454160614]
We propose an efficient Adaptive HOI Detector with Concept-guided Memory (ADA-CM)
ADA-CM has two operating modes. The first mode makes it tunable without learning new parameters in a training-free paradigm.
Our proposed method achieves competitive results with state-of-the-art on the HICO-DET and V-COCO datasets with much less training time.
arXiv Detail & Related papers (2023-09-07T13:10:06Z) - Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need [84.3507610522086]
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting old ones.
Recent pre-training has achieved substantial progress, making vast pre-trained models (PTMs) accessible for CIL.
We argue that the core factors in CIL are adaptivity for model updating and generalizability for knowledge transferring.
arXiv Detail & Related papers (2023-03-13T17:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.