Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures
- URL: http://arxiv.org/abs/2407.09468v1
- Date: Fri, 12 Jul 2024 17:48:36 GMT
- Title: Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures
- Authors: Sophia Sanborn, Johan Mathe, Mathilde Papillon, Domas Buracas, Hansen J Lillemark, Christian Shewmake, Abby Bertics, Xavier Pennec, Nina Miolane,
- Abstract summary: Modern machine learning encounters richly structured data that is inherently nonEuclidean.
Extracting knowledge from such non-Euclidean data requires a broader mathematical perspective.
We propose a graphical taxonomy that integrates recent advances into an intuitive unified framework.
- Score: 3.5357133304100326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The enduring legacy of Euclidean geometry underpins classical machine learning, which, for decades, has been primarily developed for data lying in Euclidean space. Yet, modern machine learning increasingly encounters richly structured data that is inherently nonEuclidean. This data can exhibit intricate geometric, topological and algebraic structure: from the geometry of the curvature of space-time, to topologically complex interactions between neurons in the brain, to the algebraic transformations describing symmetries of physical systems. Extracting knowledge from such non-Euclidean data necessitates a broader mathematical perspective. Echoing the 19th-century revolutions that gave rise to non-Euclidean geometry, an emerging line of research is redefining modern machine learning with non-Euclidean structures. Its goal: generalizing classical methods to unconventional data types with geometry, topology, and algebra. In this review, we provide an accessible gateway to this fast-growing field and propose a graphical taxonomy that integrates recent advances into an intuitive unified framework. We subsequently extract insights into current challenges and highlight exciting opportunities for future development in this field.
Related papers
- Geometric Constraints in Deep Learning Frameworks: A Survey [12.021629185200807]
Stereophotogrammetry is an emerging technique of scene understanding.
We explore the overlap for geometric-based and deep learning-based frameworks.
We present a new taxonomy for prevalent geometry enforcing constraints used in modern deep learning frameworks.
arXiv Detail & Related papers (2024-03-19T04:41:09Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
This paper presents a survey of data structures, models, and applications related to geometric GNNs.
We provide a unified view of existing models from the geometric message passing perspective.
We also summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation.
arXiv Detail & Related papers (2024-03-01T12:13:04Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
Recent advances in computational modelling of atomic systems represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space.
Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation.
This paper provides a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems.
arXiv Detail & Related papers (2023-12-12T18:44:19Z) - Symmetry-Informed Geometric Representation for Molecules, Proteins, and
Crystalline Materials [66.14337835284628]
We propose a platform, coined Geom3D, which enables benchmarking the effectiveness of geometric strategies.
Geom3D contains 16 advanced symmetry-informed geometric representation models and 14 geometric pretraining methods over 46 diverse datasets.
arXiv Detail & Related papers (2023-06-15T05:37:25Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
We study continual learning from a novel perspective by exploring data geometry for the non-stationary stream of data.
Our method dynamically expands the geometry of the underlying space to match growing geometric structures induced by new data.
Experiments show that our method achieves better performance than baseline methods designed in Euclidean space.
arXiv Detail & Related papers (2023-04-08T06:35:25Z) - Geoclidean: Few-Shot Generalization in Euclidean Geometry [36.203651858533]
Euclidean geometry is among the earliest forms of mathematical thinking.
Will computer vision models trained on natural images show the same sensitivity to Euclidean geometry?
We introduce Geoclidean, a domain-specific language for Euclidean geometry.
arXiv Detail & Related papers (2022-11-30T01:17:22Z) - Geometry Interaction Knowledge Graph Embeddings [153.69745042757066]
We propose Geometry Interaction knowledge graph Embeddings (GIE), which learns spatial structures interactively between the Euclidean, hyperbolic and hyperspherical spaces.
Our proposed GIE can capture a richer set of relational information, model key inference patterns, and enable expressive semantic matching across entities.
arXiv Detail & Related papers (2022-06-24T08:33:43Z) - Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [50.22269760171131]
The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods.
This text is concerned with exposing pre-defined regularities through unified geometric principles.
It provides a common mathematical framework to study the most successful neural network architectures, such as CNNs, RNNs, GNNs, and Transformers.
arXiv Detail & Related papers (2021-04-27T21:09:51Z) - Learning Geometry-Dependent and Physics-Based Inverse Image
Reconstruction [9.565653662306806]
We present a new approach to learn inverse imaging that exploit the underlying geometry and physics.
We first introduce a non-Euclidean encoding-decoding network that allows us to describe the unknown and measurement variables.
We then learn the geometry-dependent physics in between the two domains by explicitly modeling it via a bipartite graph.
arXiv Detail & Related papers (2020-07-18T21:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.