Geometric Constraints in Deep Learning Frameworks: A Survey
- URL: http://arxiv.org/abs/2403.12431v1
- Date: Tue, 19 Mar 2024 04:41:09 GMT
- Title: Geometric Constraints in Deep Learning Frameworks: A Survey
- Authors: Vibhas K Vats, David J Crandall,
- Abstract summary: Stereophotogrammetry is an emerging technique of scene understanding.
We explore the overlap for geometric-based and deep learning-based frameworks.
We present a new taxonomy for prevalent geometry enforcing constraints used in modern deep learning frameworks.
- Score: 12.021629185200807
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Stereophotogrammetry is an emerging technique of scene understanding. Its origins go back to at least the 1800s when people first started to investigate using photographs to measure the physical properties of the world. Since then, thousands of approaches have been explored. The classic geometric techniques of Shape from Stereo is built on using geometry to define constraints on scene and camera geometry and then solving the non-linear systems of equations. More recent work has taken an entirely different approach, using end-to-end deep learning without any attempt to explicitly model the geometry. In this survey, we explore the overlap for geometric-based and deep learning-based frameworks. We compare and contrast geometry enforcing constraints integrated into a deep learning framework for depth estimation or other closely related problems. We present a new taxonomy for prevalent geometry enforcing constraints used in modern deep learning frameworks. We also present insightful observations and potential future research directions.
Related papers
- Diagram Formalization Enhanced Multi-Modal Geometry Problem Solver [11.69164802295844]
We introduce a new framework that integrates visual features, geometric formal language, and natural language representations.
We propose a novel synthetic data approach and create a large-scale geometric dataset, SynthGeo228K, annotated with both formal and natural language captions.
Our framework improves MLLMs' ability to process geometric diagrams and extends their application to open-ended tasks on the formalgeo7k dataset.
arXiv Detail & Related papers (2024-09-06T12:11:06Z) - Geometry-guided Feature Learning and Fusion for Indoor Scene Reconstruction [14.225228781008209]
This paper proposes a novel geometry integration mechanism for 3D scene reconstruction.
Our approach incorporates 3D geometry at three levels, i.e. feature learning, feature fusion, and network supervision.
arXiv Detail & Related papers (2024-08-28T08:02:47Z) - Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures [3.5357133304100326]
Modern machine learning encounters richly structured data that is inherently nonEuclidean.
Extracting knowledge from such non-Euclidean data requires a broader mathematical perspective.
We propose a graphical taxonomy that integrates recent advances into an intuitive unified framework.
arXiv Detail & Related papers (2024-07-12T17:48:36Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
We introduce a novel approach to learn geometries such as depth and surface normal from images while incorporating geometric context.
Our approach extracts geometric context that encodes the geometric variations present in the input image and correlates depth estimation with geometric constraints.
Our method unifies depth and surface normal estimations within a cohesive framework, which enables the generation of high-quality 3D geometry from images.
arXiv Detail & Related papers (2024-02-08T17:57:59Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
We study continual learning from a novel perspective by exploring data geometry for the non-stationary stream of data.
Our method dynamically expands the geometry of the underlying space to match growing geometric structures induced by new data.
Experiments show that our method achieves better performance than baseline methods designed in Euclidean space.
arXiv Detail & Related papers (2023-04-08T06:35:25Z) - Geoclidean: Few-Shot Generalization in Euclidean Geometry [36.203651858533]
Euclidean geometry is among the earliest forms of mathematical thinking.
Will computer vision models trained on natural images show the same sensitivity to Euclidean geometry?
We introduce Geoclidean, a domain-specific language for Euclidean geometry.
arXiv Detail & Related papers (2022-11-30T01:17:22Z) - Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [50.22269760171131]
The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods.
This text is concerned with exposing pre-defined regularities through unified geometric principles.
It provides a common mathematical framework to study the most successful neural network architectures, such as CNNs, RNNs, GNNs, and Transformers.
arXiv Detail & Related papers (2021-04-27T21:09:51Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
We introduce DSG-Net, a deep neural network that learns a disentangled structured and geometric mesh representation for 3D shapes.
This supports a range of novel shape generation applications with disentangled control, such as of structure (geometry) while keeping geometry (structure) unchanged.
Our method not only supports controllable generation applications but also produces high-quality synthesized shapes, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2020-08-12T17:06:51Z) - Deep Geometric Texture Synthesis [83.9404865744028]
We propose a novel framework for synthesizing geometric textures.
It learns texture statistics from local neighborhoods of a single reference 3D model.
Our network displaces mesh vertices in any direction, enabling synthesis of geometric textures.
arXiv Detail & Related papers (2020-06-30T19:36:38Z) - Consistent Video Depth Estimation [57.712779457632024]
We present an algorithm for reconstructing dense, geometrically consistent depth for all pixels in a monocular video.
We leverage a conventional structure-from-motion reconstruction to establish geometric constraints on pixels in the video.
Our algorithm is able to handle challenging hand-held captured input videos with a moderate degree of dynamic motion.
arXiv Detail & Related papers (2020-04-30T17:59:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.