Rethinking Knee Osteoarthritis Severity Grading: A Few Shot Self-Supervised Contrastive Learning Approach
- URL: http://arxiv.org/abs/2407.09515v1
- Date: Tue, 18 Jun 2024 19:36:18 GMT
- Title: Rethinking Knee Osteoarthritis Severity Grading: A Few Shot Self-Supervised Contrastive Learning Approach
- Authors: Niamh Belton, Misgina Tsighe Hagos, Aonghus Lawlor, Kathleen M. Curran,
- Abstract summary: Currently, radiologists grade the severity of Knee Osteoarthritis (OA) on an ordinal scale from zero to four using the Kellgren-Lawrence (KL) system.
Recent studies have raised concern in relation to the subjectivity of the KL grading system.
This work presents preliminary results of an automated system with a continuous grading scale.
- Score: 0.2812395851874055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knee Osteoarthritis (OA) is a debilitating disease affecting over 250 million people worldwide. Currently, radiologists grade the severity of OA on an ordinal scale from zero to four using the Kellgren-Lawrence (KL) system. Recent studies have raised concern in relation to the subjectivity of the KL grading system, highlighting the requirement for an automated system, while also indicating that five ordinal classes may not be the most appropriate approach for assessing OA severity. This work presents preliminary results of an automated system with a continuous grading scale. This system, namely SS-FewSOME, uses self-supervised pre-training to learn robust representations of the features of healthy knee X-rays. It then assesses the OA severity by the X-rays' distance to the normal representation space. SS-FewSOME initially trains on only 'few' examples of healthy knee X-rays, thus reducing the barriers to clinical implementation by eliminating the need for large training sets and costly expert annotations that existing automated systems require. The work reports promising initial results, obtaining a positive Spearman Rank Correlation Coefficient of 0.43, having had access to only 30 ground truth labels at training time.
Related papers
- An AI System for Continuous Knee Osteoarthritis Severity Grading Using Self-Supervised Anomaly Detection with Limited Data [0.30723404270319693]
This work proposes a three stage approach for automated continuous grading of knee OA.
It learns a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality.
The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance.
arXiv Detail & Related papers (2024-07-16T08:37:33Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
This paper proposes a novel approach to train a generative Diffusion Autoencoder model as an unsupervised feature extractor.
We model fracture grading as a continuous regression, which is more reflective of the smooth progression of fractures.
Importantly, the generative nature of our method allows us to visualize different grades of a given vertebra, providing interpretability and insight into the features that contribute to automated grading.
arXiv Detail & Related papers (2023-03-21T17:16:01Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Automated Grading of Radiographic Knee Osteoarthritis Severity Combined
with Joint Space Narrowing [9.56244753914375]
Assessment of knee osteoarthritis (KOA) severity on knee X-rays is a central criteria for the use of total knee.
We propose a novel deep learning-based five-step algorithm to automatically grade KOA from posterior-anterior (PA) views of radiographs.
arXiv Detail & Related papers (2022-03-16T19:54:47Z) - Coherence Learning using Keypoint-based Pooling Network for Accurately
Assessing Radiographic Knee Osteoarthritis [18.47511520060851]
Knee osteoarthritis (OA) is a common degenerate joint disorder that affects a large population of elderly people worldwide.
Current clinically-adopted knee OA grading systems are observer subjective and suffer from inter-rater disagreements.
We propose a computer-aided diagnosis approach to provide more accurate and consistent assessments of both composite and fine-grained OA grades simultaneously.
arXiv Detail & Related papers (2021-12-16T19:59:13Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Knee Osteoarthritis Severity Prediction using an Attentive Multi-Scale
Deep Convolutional Neural Network [8.950918531231158]
This paper presents a deep learning-based framework, namely OsteoHRNet, that automatically assesses the Knee Osteoarthritis severity in terms of Kellgren and Lawrence grade classification from X-rays.
Our proposed model has achieved the best multiclass accuracy of 71.74% and MAE of 0.311 on the baseline cohort of the OAI dataset.
arXiv Detail & Related papers (2021-06-27T17:29:46Z) - Grading Loss: A Fracture Grade-based Metric Loss for Vertebral Fracture
Detection [58.984536305767996]
We propose a representation learning-inspired approach for automated vertebral fracture detection.
We present a novel Grading Loss for learning representations that respect Genant's fracture grading scheme.
On a publicly available spine dataset, the proposed loss function achieves a fracture detection F1 score of 81.5%.
arXiv Detail & Related papers (2020-08-18T10:03:45Z) - Automatic Grading of Knee Osteoarthritis on the Kellgren-Lawrence Scale
from Radiographs Using Convolutional Neural Networks [0.0]
We propose a novel method using convolutional neural networks to automatically grade knee radiographs on the Kellgren-Lawrence (KL) scale.
Our method works in two connected stages: in the first stage, an object detection model segments individual knees from the rest of the image; in the second stage, a regression model automatically grades each knee separately on the KL scale.
arXiv Detail & Related papers (2020-04-18T09:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.