Hierarchical Self-Supervised Adversarial Training for Robust Vision Models in Histopathology
- URL: http://arxiv.org/abs/2503.10629v1
- Date: Thu, 13 Mar 2025 17:59:47 GMT
- Title: Hierarchical Self-Supervised Adversarial Training for Robust Vision Models in Histopathology
- Authors: Hashmat Shadab Malik, Shahina Kunhimon, Muzammal Naseer, Fahad Shahbaz Khan, Salman Khan,
- Abstract summary: Adversarial attacks pose significant challenges for vision models in critical fields like healthcare.<n>Existing self-supervised adversarial training methods overlook the hierarchical structure of histopathology images.<n>We propose Hierarchical Self-Supervised Adversarial Training (HSAT), which exploits these properties to craft adversarial examples.
- Score: 64.46054930696052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial attacks pose significant challenges for vision models in critical fields like healthcare, where reliability is essential. Although adversarial training has been well studied in natural images, its application to biomedical and microscopy data remains limited. Existing self-supervised adversarial training methods overlook the hierarchical structure of histopathology images, where patient-slide-patch relationships provide valuable discriminative signals. To address this, we propose Hierarchical Self-Supervised Adversarial Training (HSAT), which exploits these properties to craft adversarial examples using multi-level contrastive learning and integrate it into adversarial training for enhanced robustness. We evaluate HSAT on multiclass histopathology dataset OpenSRH and the results show that HSAT outperforms existing methods from both biomedical and natural image domains. HSAT enhances robustness, achieving an average gain of 54.31% in the white-box setting and reducing performance drops to 3-4% in the black-box setting, compared to 25-30% for the baseline. These results set a new benchmark for adversarial training in this domain, paving the way for more robust models. Our Code for training and evaluation is available at https://github.com/HashmatShadab/HSAT.
Related papers
- RoMA: Robust Malware Attribution via Byte-level Adversarial Training with Global Perturbations and Adversarial Consistency Regularization [17.387354788421742]
APT adversaries often conceal their identities, rendering attribution inherently adversarial.<n>Existing machine learning-based attribution models, while effective, remain highly vulnerable to adversarial attacks.<n>We propose RoMA, a novel single-step adversarial training approach that integrates global perturbations to generate enhanced adversarial samples.
arXiv Detail & Related papers (2025-02-11T11:51:12Z) - A Hybrid Defense Strategy for Boosting Adversarial Robustness in Vision-Language Models [9.304845676825584]
We propose a novel adversarial training framework that integrates multiple attack strategies and advanced machine learning techniques.
Experiments conducted on real-world datasets, including CIFAR-10 and CIFAR-100, demonstrate that the proposed method significantly enhances model robustness.
arXiv Detail & Related papers (2024-10-18T23:47:46Z) - Adversarial-Robust Transfer Learning for Medical Imaging via Domain
Assimilation [17.46080957271494]
The scarcity of publicly available medical images has led contemporary algorithms to depend on pretrained models grounded on a large set of natural images.
A significant em domain discrepancy exists between natural and medical images, which causes AI models to exhibit heightened em vulnerability to adversarial attacks.
This paper proposes a em domain assimilation approach that introduces texture and color adaptation into transfer learning, followed by a texture preservation component to suppress undesired distortion.
arXiv Detail & Related papers (2024-02-25T06:39:15Z) - OCT-SelfNet: A Self-Supervised Framework with Multi-Modal Datasets for
Generalized and Robust Retinal Disease Detection [2.3349787245442966]
Our research contributes a self-supervised robust machine learning framework, OCT-SelfNet, for detecting eye diseases.
Our method addresses the issue using a two-phase training approach that combines self-supervised pretraining and supervised fine-tuning.
In terms of the AUC-PR metric, our proposed method exceeded 42%, showcasing a substantial increase of at least 10% in performance compared to the baseline.
arXiv Detail & Related papers (2024-01-22T20:17:14Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind social media texts or reviews.
We propose to enhance the ABSA robustness by systematically rethinking the bottlenecks from all possible angles, including model, data, and training.
arXiv Detail & Related papers (2023-04-19T11:07:43Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
robustness of deep neural networks is usually lacking under adversarial examples, common corruptions, and distribution shifts.
We establish a comprehensive benchmark robustness called textbfARES-Bench on the image classification task.
By designing the training settings accordingly, we achieve the new state-of-the-art adversarial robustness.
arXiv Detail & Related papers (2023-02-28T04:26:20Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - In-Bed Human Pose Estimation from Unseen and Privacy-Preserving Image
Domains [22.92165116962952]
In-bed human posture estimation provides important health-related metrics with potential value in medical condition assessments.
We propose a multi-modal conditional variational autoencoder (MC-VAE) capable of reconstructing features from missing modalities seen during training.
We demonstrate that body positions can be effectively recognized from the available modality, achieving on par results with baseline models.
arXiv Detail & Related papers (2021-11-30T04:56:16Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.