論文の概要: Apprenticeship-Inspired Elegance: Synergistic Knowledge Distillation Empowers Spiking Neural Networks for Efficient Single-Eye Emotion Recognition
- arxiv url: http://arxiv.org/abs/2407.09521v1
- Date: Thu, 20 Jun 2024 07:24:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 13:28:38.444280
- Title: Apprenticeship-Inspired Elegance: Synergistic Knowledge Distillation Empowers Spiking Neural Networks for Efficient Single-Eye Emotion Recognition
- Title(参考訳): 適応性にインスパイアされたエレガンス:効率的な単眼感情認識のためのニューラルネットワークをスパイクする相乗的知識蒸留
- Authors: Yang Wang, Haiyang Mei, Qirui Bao, Ziqi Wei, Mike Zheng Shou, Haizhou Li, Bo Dong, Xin Yang,
- Abstract要約: 本稿では, 効率的な単一眼球運動認識タスクに適した, マルチモーダル・シナジスティック知識蒸留方式を提案する。
この方法では、軽量で単調な学生スパイクニューラルネットワーク(SNN)が、イベントフレームマルチモーダル教師ネットワークから豊富な知識を抽出することができる。
- 参考スコア(独自算出の注目度): 53.359383163184425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel multimodality synergistic knowledge distillation scheme tailored for efficient single-eye motion recognition tasks. This method allows a lightweight, unimodal student spiking neural network (SNN) to extract rich knowledge from an event-frame multimodal teacher network. The core strength of this approach is its ability to utilize the ample, coarser temporal cues found in conventional frames for effective emotion recognition. Consequently, our method adeptly interprets both temporal and spatial information from the conventional frame domain, eliminating the need for specialized sensing devices, e.g., event-based camera. The effectiveness of our approach is thoroughly demonstrated using both existing and our compiled single-eye emotion recognition datasets, achieving unparalleled performance in accuracy and efficiency over existing state-of-the-art methods.
- Abstract(参考訳): 本稿では, 効率的な単一眼球運動認識タスクに適した, マルチモーダル・シナジスティック知識蒸留方式を提案する。
この方法では、軽量で単調な学生スパイクニューラルネットワーク(SNN)が、イベントフレームマルチモーダル教師ネットワークから豊富な知識を抽出することができる。
このアプローチのコアとなる強みは、従来のフレームで見られる、十分な、粗い時間的手がかりを効果的に感情認識に活用する能力である。
その結果,従来のフレーム領域からの時間的情報と空間的情報の両方を有効に解釈し,イベントベースカメラなどの特殊なセンシング装置の必要性を排除した。
提案手法の有効性は,既存の単眼感情認識データセットとコンパイルされた単眼感情認識データセットの両方を用いて完全に実証し,既存の最先端手法よりも精度と効率の両立を図った。
関連論文リスト
- Towards Certified Unlearning for Deep Neural Networks [50.816473152067104]
認定されていない未学習は、凸機械学習モデルで広く研究されている。
認定アンラーニングとディープニューラルネットワーク(DNN)のギャップを埋める手法をいくつか提案する。
論文 参考訳(メタデータ) (2024-08-01T21:22:10Z) - EMERSK -- Explainable Multimodal Emotion Recognition with Situational
Knowledge [0.0]
状況知識を用いた説明可能なマルチモーダル感情認識(EMERSK)を提案する。
EMERSKは視覚情報を用いた人間の感情認識と説明のための汎用システムである。
本システムは, 表情, 姿勢, 歩行などの複数のモーダルを柔軟かつモジュラーな方法で処理することができる。
論文 参考訳(メタデータ) (2023-06-14T17:52:37Z) - Towards a Unified View of Affinity-Based Knowledge Distillation [5.482532589225552]
我々は知識蒸留を3つの構成要素、すなわち親和性、正規化、損失の枠組みにモジュール化する。
我々は, 単純さにもかかわらず, 関係性に基づく知識蒸留が, 最先端技術に匹敵する性能を達成できることを示す。
論文 参考訳(メタデータ) (2022-09-30T16:12:25Z) - Impact of a DCT-driven Loss in Attention-based Knowledge-Distillation
for Scene Recognition [64.29650787243443]
本稿では, アクティベーションマップの2次元周波数変換を転送前に提案し, 解析する。
この戦略は、シーン認識などのタスクにおける知識伝達可能性を高める。
我々は、この論文で使われているトレーニングおよび評価フレームワークを、http://www.vpu.eps.uam.es/publications/DCTBasedKDForSceneRecognitionで公開しています。
論文 参考訳(メタデータ) (2022-05-04T11:05:18Z) - Dynamic Network Quantization for Efficient Video Inference [60.109250720206425]
本稿では,入力に条件付けされたフレーム毎に最適な精度を選択し,効率的な映像認識を実現する動的ネットワーク量子化フレームワークを提案する。
我々は、競争性能と資源効率の両方を達成するために、標準的なバックプロパゲーションと損失を使って、両方のネットワークを効果的に訓練する。
論文 参考訳(メタデータ) (2021-08-23T20:23:57Z) - Leveraging Semantic Scene Characteristics and Multi-Stream Convolutional
Architectures in a Contextual Approach for Video-Based Visual Emotion
Recognition in the Wild [31.40575057347465]
私たちは、野生のビデオベースの視覚感情認識のタスクに取り組みます。
身体および顔の特徴の抽出のみに依存する標準的な方法論は、しばしば正確な感情予測に欠ける。
我々は、シーンの特徴や属性の形で視覚的コンテキストを活用することで、この問題を軽減することを目指している。
論文 参考訳(メタデータ) (2021-05-16T17:31:59Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Collaborative Distillation in the Parameter and Spectrum Domains for
Video Action Recognition [79.60708268515293]
本稿では,行動認識のための小型かつ効率的なネットワークの訓練方法について検討する。
周波数領域における2つの蒸留戦略,すなわち特徴スペクトルとパラメータ分布蒸留を提案する。
提案手法は,同じバックボーンを持つ最先端の手法よりも高い性能を実現することができる。
論文 参考訳(メタデータ) (2020-09-15T07:29:57Z) - Deep Auto-Encoders with Sequential Learning for Multimodal Dimensional
Emotion Recognition [38.350188118975616]
本稿では、2ストリームのオートエンコーダと、感情認識のための長期記憶からなる新しいディープニューラルネットワークアーキテクチャを提案する。
野生データセットRECOLAにおけるマルチモーダル感情に関する広範な実験を行った。
実験の結果,提案手法は最先端の認識性能を達成し,既存のスキームをはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2020-04-28T01:25:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。