論文の概要: Diminishing Stereotype Bias in Image Generation Model using Reinforcemenlent Learning Feedback
- arxiv url: http://arxiv.org/abs/2407.09551v1
- Date: Thu, 27 Jun 2024 17:18:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 13:08:55.959965
- Title: Diminishing Stereotype Bias in Image Generation Model using Reinforcemenlent Learning Feedback
- Title(参考訳): 強化学習フィードバックを用いた画像生成モデルにおけるステレオタイプバイアスの最小化
- Authors: Xin Chen, Virgile Foussereau,
- Abstract要約: 本研究では,RLAIF(Reinforcement Learning from Artificial Intelligence Feedback)を用いた画像生成モデルにおける性別バイアスに対処する。
事前訓練された安定拡散モデルと高精度な性別分類変換器を用いることで、性別不均衡をシフトするRshiftと男女バランスを達成・維持するR Balanceの2つの報酬関数を導入する。
実験では、画像の品質を損なうことなくバイアスを緩和したり、追加のデータや迅速な修正を必要とすることなく、このアプローチの有効性を実証している。
- 参考スコア(独自算出の注目度): 3.406797377411835
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study addresses gender bias in image generation models using Reinforcement Learning from Artificial Intelligence Feedback (RLAIF) with a novel Denoising Diffusion Policy Optimization (DDPO) pipeline. By employing a pretrained stable diffusion model and a highly accurate gender classification Transformer, the research introduces two reward functions: Rshift for shifting gender imbalances, and Rbalance for achieving and maintaining gender balance. Experiments demonstrate the effectiveness of this approach in mitigating bias without compromising image quality or requiring additional data or prompt modifications. While focusing on gender bias, this work establishes a foundation for addressing various forms of bias in AI systems, emphasizing the need for responsible AI development. Future research directions include extending the methodology to other bias types, enhancing the RLAIF pipeline's robustness, and exploring multi-prompt fine-tuning to further advance fairness and inclusivity in AI.
- Abstract(参考訳): 本研究では,Reinforcement Learning from Artificial Intelligence Feedback (RLAIF) を用いた画像生成モデルにおける性別バイアスについて,新しいDNO(Denoising Diffusion Policy Optimization)パイプラインを用いて検討する。
事前訓練された安定拡散モデルと高精度な性別分類変換器を用いることで、性別不均衡をシフトするRshiftと男女バランスを達成・維持するR Balanceの2つの報酬関数を導入する。
実験では、画像の品質を損なうことなくバイアスを緩和したり、追加のデータや迅速な修正を必要とすることなく、このアプローチの有効性を実証している。
この研究は、ジェンダーバイアスに焦点を当てながら、AIシステムの様々な形態のバイアスに対処するための基盤を確立し、責任あるAI開発の必要性を強調している。
今後の研究方針には、方法論を他のバイアスタイプに拡張すること、RLAIFパイプラインの堅牢性の向上、AIの公正性と傾斜性をさらに向上させるマルチプロンプト微調整の探求などが含まれる。
関連論文リスト
- DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
拡散先行型IQA(DP-IQA)と呼ばれる新しいIQA法を提案する。
トレーニング済みの安定拡散をバックボーンとして使用し、復調するU-Netから多レベル特徴を抽出し、それらをデコードして画質スコアを推定する。
上記のモデルの知識をCNNベースの学生モデルに抽出し、適用性を高めるためにパラメータを大幅に削減する。
論文 参考訳(メタデータ) (2024-05-30T12:32:35Z) - Utilizing Adversarial Examples for Bias Mitigation and Accuracy Enhancement [3.0820287240219795]
本稿では,コンピュータビジョンモデルにおけるバイアスを軽減するための新しい手法を提案する。
提案手法は,カリキュラム学習フレームワークと詳細な逆数損失を組み合わせることで,逆数例を用いてモデルを微調整する。
我々は,定性評価と定量的評価を併用し,従来の方法と比較してバイアス緩和と精度の向上を実証した。
論文 参考訳(メタデータ) (2024-04-18T00:41:32Z) - PiRD: Physics-informed Residual Diffusion for Flow Field Reconstruction [5.06136344261226]
データ忠実度向上のためのCNNベースの手法は、トレーニング期間中の低忠実度データパターンと分布に依存している。
提案したモデルである物理インフォームド残差拡散(Residual Diffusion)は、標準の低忠実度入力からデータの品質を高める能力を示す。
実験結果から, 2次元乱流に対して, 再学習を必要とせず, 高品質な流れを効果的に再現できることが示唆された。
論文 参考訳(メタデータ) (2024-04-12T11:45:51Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
本稿では, 複雑な関係をモデル化する能力を示す, 最先端(SOTA)生成モデルを提案する。
生成した拡張画像とノイズを含む画像を利用する新しい拡散復元ネットワークを考案する。
2つの視覚評価枝は、得られた高レベル特徴情報を包括的に解析するように設計されている。
論文 参考訳(メタデータ) (2024-02-22T09:39:46Z) - Mitigating Exposure Bias in Discriminator Guided Diffusion Models [4.5349436061325425]
本稿では,識別器誘導とエプシロンスケーリングを組み合わせたSEDM-G++を提案する。
提案手法は,非条件CIFAR-10データセット上でFIDスコア1.73を達成し,現状よりも優れている。
論文 参考訳(メタデータ) (2023-11-18T20:49:50Z) - Detecting and Mitigating Algorithmic Bias in Binary Classification using
Causal Modeling [0.0]
予測モデルの性別バイアスは0.05レベルで統計的に有意であることを示す。
本研究は,性別バイアス軽減のための因果モデルの有効性を示す。
我々の新しいアプローチは直感的で使いやすく、R の "lavaan" のような既存の統計ソフトウェアツールを使って実装することができる。
論文 参考訳(メタデータ) (2023-10-19T02:21:04Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in
Imaging Inverse Problems [78.76955228709241]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定データに特化してデノイングネットワークを適用する。
我々は多様な画像モダリティをまたいだOOD性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Training Diffusion Models with Reinforcement Learning [82.29328477109826]
拡散モデルは、ログのような目的に近似して訓練される。
本稿では,下流目的のための拡散モデルを直接最適化するための強化学習手法について検討する。
本稿では,多段階決定問題としてデノベーションを行うことによって,ポリシー勾配アルゴリズムのクラスを実現する方法について述べる。
論文 参考訳(メタデータ) (2023-05-22T17:57:41Z) - Are Gender-Neutral Queries Really Gender-Neutral? Mitigating Gender Bias
in Image Search [8.730027941735804]
我々は、画像検索において、独特なジェンダーバイアスを研究する。
検索画像は、ジェンダーニュートラルな自然言語クエリに対して、しばしば性別不均衡である。
我々は2つの新しいデバイアスのアプローチを導入する。
論文 参考訳(メタデータ) (2021-09-12T04:47:33Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
我々は,テキスト化BIQAモデルを開発し,それを合成的および現実的歪みの両方で訓練するアプローチを提案する。
我々は、多数の画像ペアに対してBIQAのためのディープニューラルネットワークを最適化するために、忠実度損失を用いる。
6つのIQAデータベースの実験は、実験室と野生動物における画像品質を盲目的に評価する学習手法の可能性を示唆している。
論文 参考訳(メタデータ) (2020-05-28T13:35:23Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
GAN(Generative Adversarial Network)の学習安定性はいまだに悩みの種である
本稿では,判別器のための関係ネットワークアーキテクチャについて検討し,より優れた一般化と安定性を実現する三重項損失を設計する。
ベンチマークデータセットの実験により、提案された関係判別器と新たな損失は、可変視覚タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-24T11:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。