Seq-to-Final: A Benchmark for Tuning from Sequential Distributions to a Final Time Point
- URL: http://arxiv.org/abs/2407.09642v1
- Date: Fri, 12 Jul 2024 19:03:42 GMT
- Title: Seq-to-Final: A Benchmark for Tuning from Sequential Distributions to a Final Time Point
- Authors: Christina X Ji, Ahmed M Alaa, David Sontag,
- Abstract summary: Leveraging historical data is necessary to learn a model for the last time point when limited data is available in the final period.
We construct a benchmark with different sequences of synthetic shifts to evaluate the effectiveness of 3 classes of methods.
Our results suggest that, for the sequences in our benchmark, methods that disregard the sequential structure and adapt to the final time point tend to perform well.
- Score: 18.843395348612553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distribution shift over time occurs in many settings. Leveraging historical data is necessary to learn a model for the last time point when limited data is available in the final period, yet few methods have been developed specifically for this purpose. In this work, we construct a benchmark with different sequences of synthetic shifts to evaluate the effectiveness of 3 classes of methods that 1) learn from all data without adapting to the final period, 2) learn from historical data with no regard to the sequential nature and then adapt to the final period, and 3) leverage the sequential nature of historical data when tailoring a model to the final period. We call this benchmark Seq-to-Final to highlight the focus on using a sequence of time periods to learn a model for the final time point. Our synthetic benchmark allows users to construct sequences with different types of shift and compare different methods. We focus on image classification tasks using CIFAR-10 and CIFAR-100 as the base images for the synthetic sequences. We also evaluate the same methods on the Portraits dataset to explore the relevance to real-world shifts over time. Finally, we create a visualization to contrast the initializations and updates from different methods at the final time step. Our results suggest that, for the sequences in our benchmark, methods that disregard the sequential structure and adapt to the final time point tend to perform well. The approaches we evaluate that leverage the sequential nature do not offer any improvement. We hope that this benchmark will inspire the development of new algorithms that are better at leveraging sequential historical data or a deeper understanding of why methods that disregard the sequential nature are able to perform well.
Related papers
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - CycleCL: Self-supervised Learning for Periodic Videos [5.9647924003148365]
We propose CycleCL, a self-supervised learning method specifically designed to work with periodic data.
We exploit the repetitions in videos to design a novel contrastive learning method based on a triplet loss.
Our method uses pre-trained features to sample pairs of frames from approximately the same phase and negative pairs of frames from different phases.
arXiv Detail & Related papers (2023-11-05T17:40:10Z) - Contrastive Difference Predictive Coding [79.74052624853303]
We introduce a temporal difference version of contrastive predictive coding that stitches together pieces of different time series data to decrease the amount of data required to learn predictions of future events.
We apply this representation learning method to derive an off-policy algorithm for goal-conditioned RL.
arXiv Detail & Related papers (2023-10-31T03:16:32Z) - Fast Classification with Sequential Feature Selection in Test Phase [1.1470070927586016]
This paper introduces a novel approach to active feature acquisition for classification.
It is the task of sequentially selecting the most informative subset of features to achieve optimal prediction performance.
The proposed approach involves a new lazy model that is significantly faster and more efficient compared to existing methods.
arXiv Detail & Related papers (2023-06-25T21:31:46Z) - Sample and Predict Your Latent: Modality-free Sequential Disentanglement
via Contrastive Estimation [2.7759072740347017]
We introduce a self-supervised sequential disentanglement framework based on contrastive estimation with no external signals.
In practice, we propose a unified, efficient, and easy-to-code sampling strategy for semantically similar and dissimilar views of the data.
Our method presents state-of-the-art results in comparison to existing techniques.
arXiv Detail & Related papers (2023-05-25T10:50:30Z) - Uniform Sequence Better: Time Interval Aware Data Augmentation for
Sequential Recommendation [16.00020821220671]
Sequential recommendation is an important task to predict the next-item to access based on a sequence of items.
Most existing works learn user preference as the transition pattern from the previous item to the next one, ignoring the time interval between these two items.
We propose to augment sequence data from the perspective of time interval, which is not studied in the literature.
arXiv Detail & Related papers (2022-12-16T03:13:43Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Interpretable Feature Construction for Time Series Extrinsic Regression [0.028675177318965035]
In some application domains, it occurs that the target variable is numerical and the problem is known as time series extrinsic regression (TSER)
We suggest an extension of a Bayesian method for robust and interpretable feature construction and selection in the context of TSER.
Our approach exploits a relational way to tackle with TSER: (i), we build various and simple representations of the time series which are stored in a relational data scheme, then, (ii), a propositionalisation technique is applied to build interpretable features from secondary tables to "flatten" the data.
arXiv Detail & Related papers (2021-03-15T08:12:19Z) - Recent Developments Combining Ensemble Smoother and Deep Generative
Networks for Facies History Matching [58.720142291102135]
This research project focuses on the use of autoencoders networks to construct a continuous parameterization for facies models.
We benchmark seven different formulations, including VAE, generative adversarial network (GAN), Wasserstein GAN, variational auto-encoding GAN, principal component analysis (PCA) with cycle GAN, PCA with transfer style network and VAE with style loss.
arXiv Detail & Related papers (2020-05-08T21:32:42Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words"
Our approach significantly outperforms an encoder-only model in a data-poor regime.
arXiv Detail & Related papers (2020-03-14T22:29:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.