Sample and Predict Your Latent: Modality-free Sequential Disentanglement
via Contrastive Estimation
- URL: http://arxiv.org/abs/2305.15924v1
- Date: Thu, 25 May 2023 10:50:30 GMT
- Title: Sample and Predict Your Latent: Modality-free Sequential Disentanglement
via Contrastive Estimation
- Authors: Ilan Naiman, Nimrod Berman, Omri Azencot
- Abstract summary: We introduce a self-supervised sequential disentanglement framework based on contrastive estimation with no external signals.
In practice, we propose a unified, efficient, and easy-to-code sampling strategy for semantically similar and dissimilar views of the data.
Our method presents state-of-the-art results in comparison to existing techniques.
- Score: 2.7759072740347017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised disentanglement is a long-standing challenge in representation
learning. Recently, self-supervised techniques achieved impressive results in
the sequential setting, where data is time-dependent. However, the latter
methods employ modality-based data augmentations and random sampling or solve
auxiliary tasks. In this work, we propose to avoid that by generating,
sampling, and comparing empirical distributions from the underlying variational
model. Unlike existing work, we introduce a self-supervised sequential
disentanglement framework based on contrastive estimation with no external
signals, while using common batch sizes and samples from the latent space
itself. In practice, we propose a unified, efficient, and easy-to-code sampling
strategy for semantically similar and dissimilar views of the data. We evaluate
our approach on video, audio, and time series benchmarks. Our method presents
state-of-the-art results in comparison to existing techniques. The code is
available at https://github.com/azencot-group/SPYL.
Related papers
- DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting [14.390842560217743]
We propose a novel approach called DistPred for regression and forecasting tasks.
We transform proper scoring rules that measure the discrepancy between the predicted distribution and the target distribution into a differentiable discrete form.
This allows the model to sample numerous samples in a single forward pass to estimate the potential distribution of the response variable.
arXiv Detail & Related papers (2024-06-17T10:33:00Z) - Frugal Actor-Critic: Sample Efficient Off-Policy Deep Reinforcement
Learning Using Unique Experiences [8.983448736644382]
Efficient utilization of the replay buffer plays a significant role in the off-policy actor-critic reinforcement learning (RL) algorithms.
We propose a method for achieving sample efficiency, which focuses on selecting unique samples and adding them to the replay buffer.
arXiv Detail & Related papers (2024-02-05T10:04:00Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
A desirable data selection algorithm can efficiently choose the most informative samples to maximize the utility of limited annotation budgets.
Current approaches, represented by active learning methods, typically follow a cumbersome pipeline that iterates the time-consuming model training and batch data selection repeatedly.
FreeSel bypasses the heavy batch selection process, achieving a significant improvement in efficiency and being 530x faster than existing active learning methods.
arXiv Detail & Related papers (2023-09-29T15:50:14Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
Time-series representation learning can extract representations from data with temporal dynamics and sparse labels.
We propose a new time-series representation learning method by combining the advantages of self-supervised tasks.
We evaluate the proposed framework on three downstream tasks: time-series classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2023-03-02T07:44:06Z) - Sequential Kernelized Independence Testing [101.22966794822084]
We design sequential kernelized independence tests inspired by kernelized dependence measures.
We demonstrate the power of our approaches on both simulated and real data.
arXiv Detail & Related papers (2022-12-14T18:08:42Z) - Learn from Unpaired Data for Image Restoration: A Variational Bayes
Approach [18.007258270845107]
We propose LUD-VAE, a deep generative method to learn the joint probability density function from data sampled from marginal distributions.
We apply our method to real-world image denoising and super-resolution tasks and train the models using the synthetic data generated by the LUD-VAE.
arXiv Detail & Related papers (2022-04-21T13:27:17Z) - Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training [20.242645823965145]
Out-of-scope intent detection is of practical importance in task-oriented dialogue systems.
We propose a method to train an out-of-scope intent classifier in a fully end-to-end manner by simulating the test scenario in training.
We evaluate our method extensively on four benchmark dialogue datasets and observe significant improvements over state-of-the-art approaches.
arXiv Detail & Related papers (2021-06-16T08:17:18Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
We propose a noise-robust approach named Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency)
Specifically, we train the network in a contrastive learning manner. Predictions from two different views of each sample are used to estimate its "likelihood" of being clean or out-of-distribution.
arXiv Detail & Related papers (2021-03-24T07:26:07Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
We present a method for quantifying disentanglement that only uses the generative model.
We empirically evaluate several state-of-the-art models across multiple datasets.
arXiv Detail & Related papers (2020-06-05T20:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.