論文の概要: OXN -- Automated Observability Assessments for Cloud-Native Applications
- arxiv url: http://arxiv.org/abs/2407.09644v1
- Date: Fri, 12 Jul 2024 19:04:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 21:28:05.282885
- Title: OXN -- Automated Observability Assessments for Cloud-Native Applications
- Title(参考訳): OXN -- クラウドネイティブアプリケーションのための自動可観測性評価
- Authors: Maria C. Borges, Joshua Bauer, Sebastian Werner,
- Abstract要約: 実験ツールの概念実証実装として, 可観測性 eXperiment eNgine (OXN) を提案する。
OXNはChaos Engineeringに似た任意の障害をアプリケーションに注入できるが、可観測性の設定を変更するユニークな機能もある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Observability is important to ensure the reliability of microservice applications. These applications are often prone to failures, since they have many independent services deployed on heterogeneous environments. When employed "correctly", observability can help developers identify and troubleshoot faults quickly. However, instrumenting and configuring the observability of a microservice application is not trivial but tool-dependent and tied to costs. Practitioners need to understand observability-related trade-offs in order to weigh between different observability design alternatives. Still, these architectural design decisions are not supported by systematic methods and typically just rely on "professional intuition". To assess observability design trade-offs with concrete evidence, we advocate for conducting experiments that compare various design alternatives. Achieving a systematic and repeatable experiment process necessitates automation. We present a proof-of-concept implementation of an experiment tool - Observability eXperiment eNgine (OXN). OXN is able to inject arbitrary faults into an application, similar to Chaos Engineering, but also possesses the unique capability to modify the observability configuration, allowing for the straightforward assessment of design decisions that were previously left unexplored.
- Abstract(参考訳): マイクロサービスアプリケーションの信頼性を保証するためには、可観測性が重要です。
これらのアプリケーションは、異種環境にデプロイされる多くの独立したサービスがあるため、しばしば障害を起こしやすい。
正しく"使用される場合、オブザーバビリティは、開発者が障害を素早く特定し、トラブルシュートするのに役立ちます。
しかしながら、マイクロサービスアプリケーションの可観測性の測定と設定は簡単ではなく、ツールに依存し、コストに結びついている。
実践者は、異なる可観測性設計の選択肢を重み付けするために、可観測性に関連するトレードオフを理解する必要がある。
それでも、これらのアーキテクチャ設計決定は体系的な手法ではサポートされず、通常単に「専門的な直観」に依存している。
具体的な証拠とともに可観測性設計のトレードオフを評価するため,様々な設計代替品を比較する実験を行うことを提唱する。
組織的で反復可能な実験プロセスを達成するには、自動化が必要です。
本稿では,実験ツール-Observability eXperiment eNgine (OXN) の概念実証実装について述べる。
OXNはChaos Engineeringに似た任意のフォールトをアプリケーションに注入することができるが、可観測性の設定を変更するユニークな機能も備えており、これまで探索されていなかった設計決定の直接的な評価を可能にしている。
関連論文リスト
- AExGym: Benchmarks and Environments for Adaptive Experimentation [7.948144726705323]
実世界のデータセットに基づく適応実験のためのベンチマークを提案する。
非定常性、バッチ/遅延フィードバック、複数の成果と目標、外部の妥当性。
論文 参考訳(メタデータ) (2024-08-08T15:32:12Z) - Informed and Assessable Observability Design Decisions in Cloud-native Microservice Applications [0.0]
マイクロサービスアプリケーションの信頼性を確保するためには、可観測性が重要です。
アーキテクトは、観測可能性に関するトレードオフを理解して、異なる観測可能性設計の選択肢を重んじる必要がある。
我々は、情報的かつ継続的に評価可能な可観測性設計決定に到達するための体系的な方法について議論する。
論文 参考訳(メタデータ) (2024-03-01T16:12:20Z) - Discovering Decision Manifolds to Assure Trusted Autonomous Systems [0.0]
本稿では,システムが提示できる正誤応答の範囲を最適化した探索手法を提案する。
この多様体は、従来のテストやモンテカルロシミュレーションよりもシステムの信頼性をより詳細に理解する。
この概念実証では,本手法を自動運転車のループ内ソフトウェア評価に適用する。
論文 参考訳(メタデータ) (2024-02-12T16:55:58Z) - Flexible and Robust Counterfactual Explanations with Minimal Satisfiable
Perturbations [56.941276017696076]
我々は、最小満足度摂動(CEMSP)を用いた対実的説明法という概念的に単純だが効果的な解を提案する。
CEMSPは、意味論的に意味のある正常範囲の助けを借りて、異常な特徴の値を変更することを制限している。
既存の手法と比較して、我々は合成データセットと実世界のデータセットの両方で包括的な実験を行い、柔軟性を維持しつつ、より堅牢な説明を提供することを示した。
論文 参考訳(メタデータ) (2023-09-09T04:05:56Z) - Robots That Ask For Help: Uncertainty Alignment for Large Language Model
Planners [85.03486419424647]
KnowNoは、大きな言語モデルの不確実性を測定し、調整するためのフレームワークである。
KnowNoは、タスク完了に関する統計的保証を提供する共形予測理論に基づいている。
論文 参考訳(メタデータ) (2023-07-04T21:25:12Z) - R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility
Across Random User Intents [14.455036827804541]
大規模言語モデルは、コードのような構造化されたテキストを予測する上で印象的な結果を示すが、一般的にはエラーや幻覚を出力に導入する。
ランダム化ユーティリティ駆動型不確実領域合成(R-U-SURE)を提案する。
R-U-SUREは、ゴール条件付きユーティリティの意思決定理論モデルに基づく不確実性を考慮した提案を構築するためのアプローチである。
論文 参考訳(メタデータ) (2023-03-01T18:46:40Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - CoreDiag: Eliminating Redundancy in Constraint Sets [68.8204255655161]
最小コア(最小非冗長制約集合)の決定に利用できる新しいアルゴリズムを提案する。
このアルゴリズムは、冗長性の度合いが高い分散知識工学シナリオにおいて特に有用である。
本手法の適用可能性を示すために, 商業的構成知識ベースを用いた実証的研究を実施した。
論文 参考訳(メタデータ) (2021-02-24T09:16:10Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
機械学習(ML)システムは、トレーニングデータとは異なるディストリビューションから来るテストデータを扱う場合、しばしばOoD(Out-of-Distribution)エラーに遭遇する。
既存のOoD検出アプローチはエラーを起こしやすく、時にはOoDサンプルに高い確率を割り当てることもある。
本稿では,すべての不確実性を考慮したアーキテクチャの共通構築ブロックを特定するために,ニューラルアーキテクチャ分布探索(NADS)を提案する。
論文 参考訳(メタデータ) (2020-06-11T17:39:07Z) - Collaborative Inference for Efficient Remote Monitoring [34.27630312942825]
これをモデルレベルで解決するための簡単なアプローチは、より単純なアーキテクチャを使用することです。
本稿では,局所的なモニタリングツールとして機能する単純な関数の和として,予測モデルを分解した代替手法を提案する。
ローカル監視機能が安全であることを保証するために、後者にサイン要求が課される。
論文 参考訳(メタデータ) (2020-02-12T01:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。