論文の概要: 3x2: 3D Object Part Segmentation by 2D Semantic Correspondences
- arxiv url: http://arxiv.org/abs/2407.09648v1
- Date: Fri, 12 Jul 2024 19:08:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 21:28:05.274640
- Title: 3x2: 3D Object Part Segmentation by 2D Semantic Correspondences
- Title(参考訳): 3x2:2次元意味対応による3次元オブジェクト部分分割
- Authors: Anh Thai, Weiyao Wang, Hao Tang, Stefan Stojanov, Matt Feiszli, James M. Rehg,
- Abstract要約: 本稿では,いくつかのアノテーション付き3D形状やリッチアノテーション付き2Dデータセットを活用して3Dオブジェクト部分のセグメンテーションを実現することを提案する。
我々は,様々な粒度レベルのベンチマークでSOTA性能を実現する3-By-2という新しい手法を提案する。
- 参考スコア(独自算出の注目度): 33.99493183183571
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D object part segmentation is essential in computer vision applications. While substantial progress has been made in 2D object part segmentation, the 3D counterpart has received less attention, in part due to the scarcity of annotated 3D datasets, which are expensive to collect. In this work, we propose to leverage a few annotated 3D shapes or richly annotated 2D datasets to perform 3D object part segmentation. We present our novel approach, termed 3-By-2 that achieves SOTA performance on different benchmarks with various granularity levels. By using features from pretrained foundation models and exploiting semantic and geometric correspondences, we are able to overcome the challenges of limited 3D annotations. Our approach leverages available 2D labels, enabling effective 3D object part segmentation. Our method 3-By-2 can accommodate various part taxonomies and granularities, demonstrating interesting part label transfer ability across different object categories. Project website: \url{https://ngailapdi.github.io/projects/3by2/}.
- Abstract(参考訳): 3Dオブジェクト部分のセグメンテーションはコンピュータビジョンアプリケーションに不可欠である。
2Dオブジェクト部分のセグメンテーションでかなりの進歩があったが、この3Dデータセットは、収集に費用がかかる注釈付き3Dデータセットが不足しているため、あまり注目されていない。
本研究では,いくつかの注釈付き3次元形状やリッチな注釈付き2次元データセットを活用して3次元オブジェクト部分分割を実現することを提案する。
我々は,様々な粒度レベルのベンチマークでSOTA性能を実現する3-By-2という新しい手法を提案する。
事前訓練された基礎モデルの特徴を利用し,意味的および幾何学的対応を活用することで,限られた3次元アノテーションの課題を克服することができる。
提案手法は利用可能な2次元ラベルを活用し,有効3次元オブジェクト部分分割を実現する。
提案手法は,3-By-2で様々な分類・粒度に対応可能であり,異なる対象カテゴリにまたがる興味深い部分ラベル転送能力を示す。
プロジェクトウェブサイト: \url{https://ngailapdi.github.io/projects/3by2/}
関連論文リスト
- Reasoning3D -- Grounding and Reasoning in 3D: Fine-Grained Zero-Shot Open-Vocabulary 3D Reasoning Part Segmentation via Large Vision-Language Models [20.277479473218513]
オブジェクトの検索とローカライズのためのZero-Shot 3D Reasoningを提案する。
複雑なコマンドを理解し実行するためのシンプルなベースラインメソッドReasoning3Dを設計する。
Reasoning3Dは、暗黙のテキストクエリに基づいて、3Dオブジェクトの一部を効果的にローカライズし、ハイライトすることができることを示す。
論文 参考訳(メタデータ) (2024-05-29T17:56:07Z) - SAM-guided Graph Cut for 3D Instance Segmentation [63.797612618531346]
本稿では,3次元画像情報と多視点画像情報の同時利用による3次元インスタンス分割の課題に対処する。
本稿では,3次元インスタンスセグメンテーションのための2次元セグメンテーションモデルを効果的に活用する新しい3D-to-2Dクエリフレームワークを提案する。
本手法は,ロバストなセグメンテーション性能を実現し,異なるタイプのシーンにまたがる一般化を実現する。
論文 参考訳(メタデータ) (2023-12-13T18:59:58Z) - Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance [72.6809373191638]
本稿では,3次元ラベルを必要とせずに2次元ドメインと3次元ドメイン間の制約を活用できるフレームワークを提案する。
具体的には、LiDARと画像特徴をオブジェクト認識領域に基づいて整列する特徴レベルの制約を設計する。
第二に、出力レベルの制約は、2Dと投影された3Dボックスの推定の重なりを強制するために開発される。
第3に、トレーニングレベルの制約は、視覚データと整合した正確で一貫した3D擬似ラベルを生成することによって利用される。
論文 参考訳(メタデータ) (2023-12-12T18:57:25Z) - PartSLIP++: Enhancing Low-Shot 3D Part Segmentation via Multi-View
Instance Segmentation and Maximum Likelihood Estimation [32.2861030554128]
最近の進歩であるPartSLIPは、ゼロと少数ショットの3D部分セグメンテーションにおいて大きな進歩を遂げている。
先代の制限を克服するために設計された拡張バージョンであるPartSLIP++を紹介する。
ローショットな3Dセマンティクスとインスタンスベースのオブジェクト部分分割タスクの両方において、PartSLIP++はPartSLIPよりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-12-05T01:33:04Z) - Segment Any 3D Gaussians [85.93694310363325]
本稿では, 3次元ガウススプレイティング(3D-GS)に基づく高効率3Dプロンプト可能なセグメンテーション法であるSAGAについて述べる。
入力として2D視覚的プロンプトが与えられたとき、SAGAは対応する3Dターゲットを4ミリ秒以内に3Dガウスで表現できる。
我々は,SAGAが最先端の手法に匹敵する品質で,リアルタイムな多粒度セグメンテーションを実現することを示す。
論文 参考訳(メタデータ) (2023-12-01T17:15:24Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance
Fields [73.97131748433212]
本稿では,無限で高品質な3Dアノテーションを3Dポイントクラウドセグメンテーションとともに生成できる新しいアプローチを提案する。
我々は3次元生成モデルに先立って強力なセマンティクスを活用してセマンティクスデコーダを訓練する。
トレーニングが完了すると、デコーダは遅延空間を効率よく一般化し、無限のデータの生成を可能にする。
論文 参考訳(メタデータ) (2023-11-18T21:58:28Z) - A One Stop 3D Target Reconstruction and multilevel Segmentation Method [0.0]
オープンソースのワンストップ3Dターゲット再構成とマルチレベルセグメンテーションフレームワーク(OSTRA)を提案する。
OSTRAは2D画像上でセグメンテーションを行い、画像シーケンス内のセグメンテーションラベルで複数のインスタンスを追跡し、ラベル付き3Dオブジェクトまたは複数のパーツをMulti-View Stereo(MVS)またはRGBDベースの3D再構成手法で再構成する。
本手法は,複雑なシーンにおいて,リッチなマルチスケールセグメンテーション情報に埋め込まれた3次元ターゲットを再構築するための新たな道を開く。
論文 参考訳(メタデータ) (2023-08-14T07:12:31Z) - Tracking Objects with 3D Representation from Videos [57.641129788552675]
P3DTrackと呼ばれる新しい2次元多目的追跡パラダイムを提案する。
モノクロビデオにおける擬似3Dオブジェクトラベルからの3次元オブジェクト表現学習により,P3DTrackと呼ばれる新しい2次元MOTパラダイムを提案する。
論文 参考訳(メタデータ) (2023-06-08T17:58:45Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
そこで本研究では,2次元領域における自己教師型手法を,微細な3次元形状分割作業に活用することを提案する。
複数のビューから3次元形状を描画し、コントラスト学習フレームワーク内に密接な対応学習タスクを設置する。
その結果、学習された2次元表現はビュー不変であり、幾何学的に一貫性がある。
論文 参考訳(メタデータ) (2022-08-18T00:48:15Z) - Multi-Modality Task Cascade for 3D Object Detection [22.131228757850373]
多くの手法は2つのモデルを個別に訓練し、単純な特徴結合を用いて3Dセンサーデータを表現している。
本稿では,3次元ボックスの提案を利用して2次元セグメンテーション予測を改善する新しいマルチモードタスクカスケードネットワーク(MTC-RCNN)を提案する。
2段階の3次元モジュール間の2次元ネットワークを組み込むことで,2次元および3次元のタスク性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2021-07-08T17:55:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。