論文の概要: Introducing GPU-acceleration into the Python-based Simulations of Chemistry Framework
- arxiv url: http://arxiv.org/abs/2407.09700v1
- Date: Fri, 12 Jul 2024 21:50:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 21:18:20.395206
- Title: Introducing GPU-acceleration into the Python-based Simulations of Chemistry Framework
- Title(参考訳): Pythonベースの化学フレームワークのシミュレーションにGPUアクセラレーションを導入する
- Authors: Rui Li, Qiming Sun, Xing Zhang, Garnet Kin-Lic Chan,
- Abstract要約: 我々はPySCFのメソッドのGPUアクセラレーションを提供するモジュールであるGPU4PySCFの最初のバージョンを紹介する。
ベンチマーク計算は、PySCFのマルチスレッドCPUHartree-Fockコードに対して、2桁の大幅な高速化を示している。
- 参考スコア(独自算出の注目度): 4.368931200886271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the first version of GPU4PySCF, a module that provides GPU acceleration of methods in PySCF. As a core functionality, this provides a GPU implementation of two-electron repulsion integrals (ERIs) for contracted basis sets comprising up to g functions using Rys quadrature. As an illustration of how this can accelerate a quantum chemistry workflow, we describe how to use the ERIs efficiently in the integral-direct Hartree-Fock Fock build and nuclear gradient construction. Benchmark calculations show a significant speedup of two orders of magnitude with respect to the multi-threaded CPU Hartree-Fock code of PySCF, and performance comparable to other GPU-accelerated quantum chemical packages including GAMESS and QUICK on a single NVIDIA A100 GPU.
- Abstract(参考訳): 我々はPySCFのメソッドのGPUアクセラレーションを提供するモジュールであるGPU4PySCFの最初のバージョンを紹介する。
コア機能として、2電子反発積分(ERIs)のGPU実装が提供され、Rys二次関数を用いて最大g関数を構成する。
量子化学のワークフローをいかに加速させるかの図解として、積分直交のハートリー・フォック構造と核勾配構造において、ERIを効率的に利用する方法について述べる。
ベンチマーク計算では、PySCFのマルチスレッドCPUHartree-Fockコードに対する2桁の大幅な高速化と、1つのNVIDIA A100 GPU上のGAMESSやQUICKを含む他のGPUアクセラレーション量子化学パッケージに匹敵する性能を示している。
関連論文リスト
- GPU-accelerated Effective Hamiltonian Calculator [70.12254823574538]
本研究では,非摂動解析対角化法(NPAD)とマグナス拡大法に着想を得た数値解析手法を提案する。
私たちの数値技術は、オープンソースPythonパッケージとして、$rm qCH_eff$で利用可能です。
論文 参考訳(メタデータ) (2024-11-15T06:33:40Z) - Advanced Techniques for High-Performance Fock Matrix Construction on GPU Clusters [0.0]
opt-UM と opt-Brc は、Hartree-Fock のケーキュレーションを$f$型角運動量関数に拡張した。
Opt-Brc はより小さな系と高度に収縮された三価ゼータの基底集合に対して優れ、オプト-UM は大きな分子系に対して有利である。
論文 参考訳(メタデータ) (2024-07-31T08:49:06Z) - Multi-GPU RI-HF Energies and Analytic Gradients $-$ Towards High Throughput Ab Initio Molecular Dynamics [0.0]
本稿では,複数グラフィクス処理ユニット(GPU)を用いた高次ハートリー・フォックエネルギーと解析勾配の解法を最適化したアルゴリズムと実装を提案する。
このアルゴリズムは特に、中小分子(10-100原子)の高スループット初期分子動力学シミュレーションのために設計されている。
論文 参考訳(メタデータ) (2024-07-29T00:14:10Z) - GPU-accelerated Auxiliary-field quantum Monte Carlo with multi-Slater determinant trial states [11.514211053741338]
本稿では,グラフィック処理ユニットアクセラレーション ph-AFQMC の実装と応用について述べる。
マルチスレーター試行状態を用いて、ph-AFQMCは強い相関系を忠実に扱う可能性がある。
我々の研究はMSDAFQMC計算の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2024-06-12T15:15:17Z) - Enhancing GPU-acceleration in the Python-based Simulations of Chemistry Framework [6.4347138500286665]
我々は、既存のオープンソースGPU4PySCFプロジェクトへの産業利害関係者として、当社の貢献を説明します。
我々は、密度汎関数理論(DFT)を含む他のPySCF機能にGPUアクセラレーションを統合した。
GPU4PySCFは32コアのCPUノード上で30倍のスピードアップを実現し、ほとんどのDFTタスクで約90%のコスト削減を実現している。
論文 参考訳(メタデータ) (2024-04-15T04:35:09Z) - Fully-fused Multi-Layer Perceptrons on Intel Data Center GPUs [3.7101665559244874]
本稿では,Intel Data Center GPU Max 1550用のMulti-formedLayer Perceptrons(MLP)の実装について述べる。
これにより算術強度が大幅に向上し,特に推論性能が向上することを示す。
論文 参考訳(メタデータ) (2024-03-26T11:38:39Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - Adaptive Elastic Training for Sparse Deep Learning on Heterogeneous
Multi-GPU Servers [65.60007071024629]
本稿では,Adaptive SGDが4つの最先端ソリューションよりも精度が高いことを示す。
本稿では,Adaptive SGDが時間と精度で4つの最先端ソリューションより優れていることを示す。
論文 参考訳(メタデータ) (2021-10-13T20:58:15Z) - Fast quantum circuit simulation using hardware accelerated general
purpose libraries [69.43216268165402]
CuPyは、GPUベースの量子回路向けに開発された汎用ライブラリ(線形代数)である。
上位回路の場合、スピードアップは約2倍、量子乗算器の場合、最先端のC++ベースのシミュレータと比べて約22倍である。
論文 参考訳(メタデータ) (2021-06-26T10:41:43Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
我々は,従来のCPUアルゴリズムと比較して,一精度で最大72倍,半精度で最大452倍の高速化を実現していることを示す。
提案アルゴリズムは射出成形プロセスから得られた実世界のデータに適用し, 得られたサマリーが, コスト削減と不良部品製造の削減のために, この特定のプロセスのステアリングにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2021-05-25T15:55:14Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。