Neural Operator-Based Proxy for Reservoir Simulations Considering Varying Well Settings, Locations, and Permeability Fields
- URL: http://arxiv.org/abs/2407.09728v1
- Date: Sat, 13 Jul 2024 00:26:14 GMT
- Title: Neural Operator-Based Proxy for Reservoir Simulations Considering Varying Well Settings, Locations, and Permeability Fields
- Authors: Daniel Badawi, Eduardo Gildin,
- Abstract summary: We present a single Fourier Neural Operator (FNO) surrogate that outperforms traditional reservoir simulators.
The maximum-mean relative error of 95% of pressure and saturation predictions is less than 5%.
The model can accelerate history matching and reservoir characterization procedures by several orders of magnitude.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Simulating Darcy flows in porous media is fundamental to understand the future flow behavior of fluids in hydrocarbon and carbon storage reservoirs. Geological models of reservoirs are often associated with high uncertainly leading to many numerical simulations for history matching and production optimization. Machine learning models trained with simulation data can provide a faster alternative to traditional simulators. In this paper we present a single Fourier Neural Operator (FNO) surrogate that outperforms traditional reservoir simulators by the ability to predict pressures and saturations on varying permeability fields, well locations, well controls, and number of wells. The maximum-mean relative error of 95\% of pressure and saturation predictions is less than 5\%. This is achieved by employing a simple yet very effective data augmentation technique that reduces the dataset size by 75\% and reduces overfitting. Also, constructing the input tensor in a binary fashion enables predictions on unseen well locations, well controls, and number of wells. Such model can accelerate history matching and reservoir characterization procedures by several orders of magnitude. The ability to predict on new well locations, well controls, and number of wells enables highly efficient reservoir management and optimization.
Related papers
- Accelerated training of deep learning surrogate models for surface displacement and flow, with application to MCMC-based history matching of CO2 storage operations [0.0]
We introduce a new surrogate modeling framework to predict CO2 saturation, pressure and surface displacement for use in the history matching of carbon storage operations.
Training here involves a large number of inexpensive flow-only simulations combined with a much smaller number of coupled runs.
arXiv Detail & Related papers (2024-08-20T10:31:52Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - TunaOil: A Tuning Algorithm Strategy for Reservoir Simulation Workloads [0.9940728137241215]
TunaOil is a new methodology to enhance the search for optimal numerical parameters of reservoir flow simulations.
We leverage ensembles of models in different oracles to extract information from each simulation and optimize the numerical parameters in their subsequent runs.
Our experiments show that the predictions can improve the overall workload on average by 31%.
arXiv Detail & Related papers (2022-08-04T12:11:13Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - A Deep Learning-Accelerated Data Assimilation and Forecasting Workflow
for Commercial-Scale Geologic Carbon Storage [2.464972164779053]
We propose to leverage physical understandings of porous medium flow behavior with deep learning techniques to develop a fast history matching-reservoir response forecasting workflow.
We developed surrogate models to predict dynamic pressure and CO2 plume extents under multi-well injection.
The workflow can complete history matching and reservoir forecasting with uncertainty quantification in less than one hour on a mainstream personal workstation.
arXiv Detail & Related papers (2021-05-09T16:38:29Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Multioutput Gaussian Processes with Functional Data: A Study on Coastal
Flood Hazard Assessment [0.0]
We introduce a surrogate model that accounts for time-varying inputs and provides information on spatially varying inland flooding.
In several experiments, we demonstrate the versatility of the model for both learning maps and inferring unobserved maps.
We conclude that our framework is a promising approach for forecast and early-warning systems.
arXiv Detail & Related papers (2020-07-28T08:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.