Speech Slytherin: Examining the Performance and Efficiency of Mamba for Speech Separation, Recognition, and Synthesis
- URL: http://arxiv.org/abs/2407.09732v1
- Date: Sat, 13 Jul 2024 00:35:21 GMT
- Title: Speech Slytherin: Examining the Performance and Efficiency of Mamba for Speech Separation, Recognition, and Synthesis
- Authors: Xilin Jiang, Yinghao Aaron Li, Adrian Nicolas Florea, Cong Han, Nima Mesgarani,
- Abstract summary: It is too early to conclude that Mamba is a better alternative to transformers for speech.
We evaluate three models for three tasks: Mamba-TasNet for speech separation, ConMamba for speech recognition, and VALL-M for speech synthesis.
- Score: 18.68317727349427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is too early to conclude that Mamba is a better alternative to transformers for speech before comparing Mamba with transformers in terms of both performance and efficiency in multiple speech-related tasks. To reach this conclusion, we propose and evaluate three models for three tasks: Mamba-TasNet for speech separation, ConMamba for speech recognition, and VALL-M for speech synthesis. We compare them with transformers of similar sizes in performance, memory, and speed. Our Mamba or Mamba-transformer hybrid models show comparable or higher performance than their transformer counterparts: Sepformer, Conformer, and VALL-E. They are more efficient than transformers in memory and speed for speech longer than a threshold duration, inversely related to the resolution of a speech token. Mamba for separation is the most efficient, and Mamba for recognition is the least. Further, we show that Mamba is not more efficient than transformer for speech shorter than the threshold duration and performs worse in models that require joint modeling of text and speech, such as cross or masked attention of two inputs. Therefore, we argue that the superiority of Mamba or transformer depends on particular problems and models. Code available at https://github.com/xi-j/Mamba-TasNet and https://github.com/xi-j/Mamba-ASR.
Related papers
- SepMamba: State-space models for speaker separation using Mamba [2.840381306234341]
We propose SepMamba, a U-Net-based architecture composed primarily of bidirectional Mamba layers.
We find that our approach outperforms similarly-sized prominent models on the WSJ0 2-speaker dataset.
arXiv Detail & Related papers (2024-10-28T13:20:53Z) - Can Mamba Always Enjoy the "Free Lunch"? [9.024844892536327]
Transformers have been the cornerstone of current Large Language Models (LLMs)
Mamba has gradually attracted attention due to its constant-level size during inference.
Our results suggest that to solve arbitrary DP problems, the total cost of Mamba is comparable to standard and efficient Transformers.
arXiv Detail & Related papers (2024-10-04T13:31:24Z) - MaskMamba: A Hybrid Mamba-Transformer Model for Masked Image Generation [63.73137438677585]
MaskMamba is a novel hybrid model that combines Mamba and Transformer architectures.
It achieves a remarkable $54.44%$ improvement in inference speed at a resolution of $2048times 2048$ over Transformer.
arXiv Detail & Related papers (2024-09-30T04:28:55Z) - ReMamba: Equip Mamba with Effective Long-Sequence Modeling [50.530839868893786]
We propose ReMamba, which enhances Mamba's ability to comprehend long contexts.
ReMamba incorporates selective compression and adaptation techniques within a two-stage re-forward process.
arXiv Detail & Related papers (2024-08-28T02:47:27Z) - Snakes and Ladders: Two Steps Up for VideoMamba [10.954210339694841]
In this paper, we theoretically analyze the differences between self-attention and Mamba.
We propose VideoMambaPro models that surpass VideoMamba by 1.6-2.8% and 1.1-1.9% top-1.
Our two solutions are to recent advances in Vision Mamba models, and are likely to provide further improvements in future models.
arXiv Detail & Related papers (2024-06-27T08:45:31Z) - An Empirical Study of Mamba-based Language Models [69.74383762508805]
Selective state-space models (SSMs) like Mamba overcome some shortcomings of Transformers.
We present a direct comparison between 8B-context Mamba, Mamba-2, and Transformer models trained on the same datasets.
We find that the 8B Mamba-2-Hybrid exceeds the 8B Transformer on all 12 standard tasks.
arXiv Detail & Related papers (2024-06-12T05:25:15Z) - Demystify Mamba in Vision: A Linear Attention Perspective [72.93213667713493]
Mamba is an effective state space model with linear computation complexity.
We show that Mamba shares surprising similarities with linear attention Transformer.
We propose a Mamba-Like Linear Attention (MLLA) model by incorporating the merits of these two key designs into linear attention.
arXiv Detail & Related papers (2024-05-26T15:31:09Z) - ReMamber: Referring Image Segmentation with Mamba Twister [51.291487576255435]
ReMamber is a novel RIS architecture that integrates the power of Mamba with a multi-modal Mamba Twister block.
The Mamba Twister explicitly models image-text interaction, and fuses textual and visual features through its unique channel and spatial twisting mechanism.
arXiv Detail & Related papers (2024-03-26T16:27:37Z) - MambaByte: Token-free Selective State Space Model [71.90159903595514]
MambaByte is a token-free adaptation of the Mamba SSM trained autoregressively on byte sequences.
We show MambaByte to be competitive with, and even to outperform, state-of-the-art subword Transformers on language modeling tasks.
arXiv Detail & Related papers (2024-01-24T18:53:53Z) - MoE-Mamba: Efficient Selective State Space Models with Mixture of
Experts [4.293771840782942]
State Space Models (SSMs) have become serious contenders in the field of sequential modeling.
MoE has significantly improved Transformer-based Large Language Models, including recent state-of-the-art open models.
We propose that to unlock the potential of SSMs for scaling, they should be combined with MoE.
arXiv Detail & Related papers (2024-01-08T18:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.