論文の概要: Layout-and-Retouch: A Dual-stage Framework for Improving Diversity in Personalized Image Generation
- arxiv url: http://arxiv.org/abs/2407.09779v1
- Date: Sat, 13 Jul 2024 05:28:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 20:58:50.120161
- Title: Layout-and-Retouch: A Dual-stage Framework for Improving Diversity in Personalized Image Generation
- Title(参考訳): Layout-and-Retouch: パーソナライズされた画像生成における多様性向上のためのデュアルステージフレームワーク
- Authors: Kangyeol Kim, Wooseok Seo, Sehyun Nam, Bodam Kim, Suhyeon Jeong, Wonwoo Cho, Jaegul Choo, Youngjae Yu,
- Abstract要約: 1)レイアウト生成と2)リタッチの2段階からなる,Layout-and-Retouchと呼ばれる新しいP-T2I手法を提案する。
ステップブレンド推論では,バニラT2Iモデル固有のサンプルの多様性を利用して,多様なレイアウト画像を生成する。
第2段階では、マルチソースアテンションは、第1ステージからのコンテキスト画像を参照画像に置き換え、コンテキスト画像から構造を活用し、参照画像から視覚的特徴を抽出する。
- 参考スコア(独自算出の注目度): 40.969861849933444
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized text-to-image (P-T2I) generation aims to create new, text-guided images featuring the personalized subject with a few reference images. However, balancing the trade-off relationship between prompt fidelity and identity preservation remains a critical challenge. To address the issue, we propose a novel P-T2I method called Layout-and-Retouch, consisting of two stages: 1) layout generation and 2) retouch. In the first stage, our step-blended inference utilizes the inherent sample diversity of vanilla T2I models to produce diversified layout images, while also enhancing prompt fidelity. In the second stage, multi-source attention swapping integrates the context image from the first stage with the reference image, leveraging the structure from the context image and extracting visual features from the reference image. This achieves high prompt fidelity while preserving identity characteristics. Through our extensive experiments, we demonstrate that our method generates a wide variety of images with diverse layouts while maintaining the unique identity features of the personalized objects, even with challenging text prompts. This versatility highlights the potential of our framework to handle complex conditions, significantly enhancing the diversity and applicability of personalized image synthesis.
- Abstract(参考訳): パーソナライズされたテキスト・ツー・イメージ(P-T2I)生成は、パーソナライズされた被写体を数枚の参照画像で特徴付ける新しいテキスト誘導画像を作成することを目的としている。
しかし、素早い忠実さとアイデンティティ保存のトレードオフ関係のバランスは、依然として重要な課題である。
そこで本研究では,2段階からなる新しいP-T2I手法であるLayout-and-Retouchを提案する。
1)レイアウト生成
2) 修正。
ステップブレンド推論では,バニラT2Iモデル固有のサンプルの多様性を利用して,多彩なレイアウト画像を生成するとともに,迅速な忠実度を向上させる。
第2段階では、マルチソースアテンションスワップは、第1ステージからのコンテキストイメージと参照画像とを統合し、コンテキスト画像から構造を活用し、参照画像から視覚的特徴を抽出する。
これにより、アイデンティティ特性を保持しながら、高い迅速な忠実性が得られる。
提案手法は, 多様なレイアウトを持つ多様な画像を生成するとともに, 課題のあるテキストプロンプトを伴っても, パーソナライズされたオブジェクトのユニークな特徴を保ちながら, 多様な画像を生成することを実証する。
この汎用性は、複雑な条件を扱うフレームワークの可能性を強調し、パーソナライズされた画像合成の多様性と適用性を大幅に向上させる。
関連論文リスト
- MS-Diffusion: Multi-subject Zero-shot Image Personalization with Layout Guidance [6.4680449907623006]
本研究では,マルチオブジェクトを用いたレイアウト誘導ゼロショット画像パーソナライズのためのMS-Diffusionフレームワークを提案する。
提案した多目的クロスアテンションオーケストラは、テキストの制御を保ちながら、オブジェクト間コンポジションを編成する。
論文 参考訳(メタデータ) (2024-06-11T12:32:53Z) - ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning [57.91881829308395]
AIポートレートや広告といった幅広いアプリケーションシナリオのために、ID-T2I(ID-preserving text-to-image generation)が注目されている。
我々は,ID-T2I性能を向上させるための一般的なフィードバック学習フレームワークである textbfID-Aligner を提案する。
論文 参考訳(メタデータ) (2024-04-23T18:41:56Z) - Infinite-ID: Identity-preserved Personalization via ID-semantics Decoupling Paradigm [31.06269858216316]
アイデンティティ保存型パーソナライゼーションのためのID-セマンティックデカップリングパラダイムであるInfinite-IDを提案する。
我々は、十分なID情報を取得するために、追加のイメージクロスアテンションモジュールを組み込んだアイデンティティ強化トレーニングを導入する。
また、2つのストリームをシームレスにマージするために、混合アテンションモジュールとAdaIN平均演算を組み合わせた機能相互作用機構を導入する。
論文 参考訳(メタデータ) (2024-03-18T13:39:53Z) - Training-Free Consistent Text-to-Image Generation [80.4814768762066]
テキスト・ツー・イメージ・モデルは様々なプロンプトで同じ主題を表現できる。
既存のアプローチは、特定のユーザが提供する主題を記述する新しい単語を教えるためにモデルを微調整する。
本研究では、事前学習モデルの内部アクティベーションを共有することによって、一貫した主題生成を可能にする、トレーニング不要なアプローチであるConsiStoryを提案する。
論文 参考訳(メタデータ) (2024-02-05T18:42:34Z) - Pick-and-Draw: Training-free Semantic Guidance for Text-to-Image
Personalization [56.12990759116612]
Pick-and-Drawは、パーソナライズ手法のアイデンティティ一貫性と生成多様性を高めるためのトレーニング不要なセマンティックガイダンスアプローチである。
提案手法は、パーソナライズされた拡散モデルに適用可能であり、単一の参照画像のみを必要とする。
論文 参考訳(メタデータ) (2024-01-30T05:56:12Z) - When StyleGAN Meets Stable Diffusion: a $\mathscr{W}_+$ Adapter for
Personalized Image Generation [60.305112612629465]
テキストと画像の拡散モデルは、多種多様で高品質でフォトリアリスティックな画像を生成するのに優れている。
本稿では,拡散モデルのための拡張されたアイデンティティ保存とアンタングル化を実現するために,StyleGAN 埋め込み空間 $mathcalW_+$ の新たな利用法を提案する。
提案手法は,即時記述に適合するだけでなく,一般的なスタイルGAN編集方向に対応可能なパーソナライズされたテキスト・ツー・イメージ出力を生成する。
論文 参考訳(メタデータ) (2023-11-29T09:05:14Z) - PhotoVerse: Tuning-Free Image Customization with Text-to-Image Diffusion
Models [19.519789922033034]
PhotoVerseは、テキストドメインと画像ドメインの両方にデュアルブランチ条件設定機構を組み込んだ革新的な方法論である。
1つのトレーニングフェーズの後、我々の手法は数秒で高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2023-09-11T19:59:43Z) - TaleCrafter: Interactive Story Visualization with Multiple Characters [49.14122401339003]
本稿では,ジェネリック・インタラクティブ・ストーリー・ビジュアライゼーションシステムを提案する。
複数の新しい文字を扱うことができ、レイアウトと局所構造の編集をサポートする。
システムは、ストーリー・ツー・プロンプト・ジェネレーション(S2P)、テキスト・ツー・ジェネレーション(T2L)、制御可能なテキスト・ツー・イメージ・ジェネレーション(C-T2I)、画像・トゥ・ビデオ・アニメーション(I2V)の4つの相互接続コンポーネントからなる。
論文 参考訳(メタデータ) (2023-05-29T17:11:39Z) - Highly Personalized Text Embedding for Image Manipulation by Stable
Diffusion [34.662798793560995]
高度にパーソナライズされた(PerHi)テキスト埋め込みを用いたパーソナライズ手法を提案する。
本手法では, モデル微調整や識別子を必要としないが, 背景, テクスチャ, 動きを1つの画像とターゲットテキストで操作できる。
論文 参考訳(メタデータ) (2023-03-15T17:07:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。