Convex space learning for tabular synthetic data generation
- URL: http://arxiv.org/abs/2407.09789v1
- Date: Sat, 13 Jul 2024 07:07:35 GMT
- Title: Convex space learning for tabular synthetic data generation
- Authors: Manjunath Mahendra, Chaithra Umesh, Saptarshi Bej, Kristian Schultz, Olaf Wolkenhauer,
- Abstract summary: We introduce a deep learning architecture with a generator and discriminator component that can generate synthetic samples.
Synthetic samples generated by NextConvGeN can better preserve classification and clustering performance across real and synthetic data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generating synthetic samples from the convex space of the minority class is a popular oversampling approach for imbalanced classification problems. Recently, deep-learning approaches have been successfully applied to modeling the convex space of minority samples. Beyond oversampling, learning the convex space of neighborhoods in training data has not been used to generate entire tabular datasets. In this paper, we introduce a deep learning architecture (NextConvGeN) with a generator and discriminator component that can generate synthetic samples by learning to model the convex space of tabular data. The generator takes data neighborhoods as input and creates synthetic samples within the convex space of that neighborhood. Thereafter, the discriminator tries to classify these synthetic samples against a randomly sampled batch of data from the rest of the data space. We compared our proposed model with five state-of-the-art tabular generative models across ten publicly available datasets from the biomedical domain. Our analysis reveals that synthetic samples generated by NextConvGeN can better preserve classification and clustering performance across real and synthetic data than other synthetic data generation models. Synthetic data generation by deep learning of the convex space produces high scores for popular utility measures. We further compared how diverse synthetic data generation strategies perform in the privacy-utility spectrum and produced critical arguments on the necessity of high utility models. Our research on deep learning of the convex space of tabular data opens up opportunities in clinical research, machine learning model development, decision support systems, and clinical data sharing.
Related papers
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize Malicious Network Traffic.
Our approach transforms numerical data into text, re-framing data generation as a language modeling task.
Our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data.
arXiv Detail & Related papers (2024-11-04T09:51:10Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Synthetic Information towards Maximum Posterior Ratio for deep learning
on Imbalanced Data [1.7495515703051119]
We propose a technique for data balancing by generating synthetic data for the minority class.
Our method prioritizes balancing the informative regions by identifying high entropy samples.
Our experimental results on forty-one datasets demonstrate the superior performance of our technique.
arXiv Detail & Related papers (2024-01-05T01:08:26Z) - Trading Off Scalability, Privacy, and Performance in Data Synthesis [11.698554876505446]
We introduce (a) the Howso engine, and (b) our proposed random projection based synthetic data generation framework.
We show that the synthetic data generated by Howso engine has good privacy and accuracy, which results the best overall score.
Our proposed random projection based framework can generate synthetic data with highest accuracy score, and has the fastest scalability.
arXiv Detail & Related papers (2023-12-09T02:04:25Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
*Data Synthesis* is a promising way to train a small model with very little labeled data.
We propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap.
Our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data.
arXiv Detail & Related papers (2023-10-20T17:14:25Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Convex space learning improves deep-generative oversampling for tabular
imbalanced classification on smaller datasets [0.0]
We show that existing deep generative models perform poorly compared to linear approaches generating synthetic samples from the convex space of the minority class.
We propose a deep generative model, ConvGeN combining the idea of convex space learning and deep generative models.
arXiv Detail & Related papers (2022-06-20T14:42:06Z) - Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [83.749895930242]
We propose two techniques for producing high-quality naturalistic synthetic occluded faces.
We empirically show the effectiveness and robustness of both methods, even for unseen occlusions.
We present two high-resolution real-world occluded face datasets with fine-grained annotations, RealOcc and RealOcc-Wild.
arXiv Detail & Related papers (2022-05-12T17:03:57Z) - Foundations of Bayesian Learning from Synthetic Data [1.6249267147413522]
We use a Bayesian paradigm to characterise the updating of model parameters when learning on synthetic data.
Recent results from general Bayesian updating support a novel and robust approach to synthetic-learning founded on decision theory.
arXiv Detail & Related papers (2020-11-16T21:49:17Z) - Partially Conditioned Generative Adversarial Networks [75.08725392017698]
Generative Adversarial Networks (GANs) let one synthesise artificial datasets by implicitly modelling the underlying probability distribution of a real-world training dataset.
With the introduction of Conditional GANs and their variants, these methods were extended to generating samples conditioned on ancillary information available for each sample within the dataset.
In this work, we argue that standard Conditional GANs are not suitable for such a task and propose a new Adversarial Network architecture and training strategy.
arXiv Detail & Related papers (2020-07-06T15:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.