Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models
- URL: http://arxiv.org/abs/2310.13671v1
- Date: Fri, 20 Oct 2023 17:14:25 GMT
- Title: Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models
- Authors: Ruida Wang, Wangchunshu Zhou, Mrinmaya Sachan
- Abstract summary: *Data Synthesis* is a promising way to train a small model with very little labeled data.
We propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap.
Our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data.
- Score: 69.76066070227452
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: *Data Synthesis* is a promising way to train a small model with very little
labeled data. One approach for data synthesis is to leverage the rich knowledge
from large language models to synthesize pseudo training examples for small
models, making it possible to achieve both data and compute efficiency at the
same time. However, a key challenge in data synthesis is that the synthesized
dataset often suffers from a large distributional discrepancy from the *real
task* data distribution. Thus, in this paper, we propose *Synthesis Step by
Step* (**S3**), a data synthesis framework that shrinks this distribution gap
by iteratively extrapolating the errors made by a small model trained on the
synthesized dataset on a small real-world validation dataset using a large
language model. Extensive experiments on multiple NLP tasks show that our
approach improves the performance of a small model by reducing the gap between
the synthetic dataset and the real data, resulting in significant improvement
compared to several baselines: 9.48% improvement compared to ZeroGen and 2.73%
compared to GoldGen, and at most 15.17% improvement compared to the small model
trained on human-annotated data.
Related papers
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Little Giants: Synthesizing High-Quality Embedding Data at Scale [71.352883755806]
We introduce SPEED, a framework that aligns open-source small models to efficiently generate large-scale embedding data.
SPEED uses only less than 1/10 of the GPT API calls, outperforming the state-of-the-art embedding model E5_mistral when both are trained solely on their synthetic data.
arXiv Detail & Related papers (2024-10-24T10:47:30Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - Private Synthetic Data Meets Ensemble Learning [15.425653946755025]
When machine learning models are trained on synthetic data and then deployed on real data, there is often a performance drop.
We introduce a new ensemble strategy for training downstream models, with the goal of enhancing their performance when used on real data.
arXiv Detail & Related papers (2023-10-15T04:24:42Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
This paper explores the nuances of synthetic data generation in NLP.
We highlight its advantages, including data augmentation potential and the introduction of structured variety.
We demonstrate the impact of template-based synthetic data on the performance of modern transformer models.
arXiv Detail & Related papers (2023-10-11T19:16:09Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Synt++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition [18.924716098922683]
Machine learning with synthetic data is not trivial due to the gap between the synthetic and the real data distributions.
We propose two novel techniques during training to mitigate the problems due to the distribution gap.
We show that these methods significantly improve the training of speech recognition models using synthetic data.
arXiv Detail & Related papers (2021-10-21T21:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.