Model-free Distortion Canceling and Control of Quantum Devices
- URL: http://arxiv.org/abs/2407.09877v1
- Date: Sat, 13 Jul 2024 12:54:57 GMT
- Title: Model-free Distortion Canceling and Control of Quantum Devices
- Authors: Ahmed F. Fouad, Akram Youssry, Ahmed El-Rafei, Sherif Hammad,
- Abstract summary: We introduce a general model-free control approach based on deep reinforcement learning (DRL)
We present a novel controller architecture that comprises multiple NNs.
We trained a controller to generate sequences of different target output distributions of the chip with fidelity higher than 99%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum devices need precise control to achieve their full capability. In this work, we address the problem of controlling closed quantum systems, tackling two main issues. First, in practice the control signals are usually subject to unknown classical distortions that could arise from the device fabrication, material properties and/or instruments generating those signals. Second, in most cases modeling the system is very difficult or not even viable due to uncertainties in the relations between some variables and inaccessibility to some measurements inside the system. In this paper, we introduce a general model-free control approach based on deep reinforcement learning (DRL), that can work for any closed quantum system. We train a deep neural network (NN), using the REINFORCE policy gradient algorithm to control the state probability distribution of a closed quantum system as it evolves, and drive it to different target distributions. We present a novel controller architecture that comprises multiple NNs. This enables accommodating as many different target state distributions as desired, without increasing the complexity of the NN or its training process. The used DRL algorithm works whether the control problem can be modeled as a Markov decision process (MDP) or a partially observed MDP. Our method is valid whether the control signals are discrete- or continuous-valued. We verified our method through numerical simulations based on a photonic waveguide array chip. We trained a controller to generate sequences of different target output distributions of the chip with fidelity higher than 99%, where the controller showed superior performance in canceling the classical signal distortions.
Related papers
- Controlling nonergodicity in quantum many-body systems by reinforcement learning [0.0]
We develop a model-free and deep-reinforcement learning framework for quantum nonergodicity control.
We use the paradigmatic one-dimensional tilted Fermi-Hubbard system to demonstrate that the DRL agent can efficiently learn the quantum many-body system.
The continuous control protocols and observations are experimentally feasible.
arXiv Detail & Related papers (2024-08-21T20:55:44Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states.
We use state-of-the-art verification techniques to provide guarantees on the interval Markov decision process and compute a controller for which these guarantees carry over to the original control system.
arXiv Detail & Related papers (2023-01-04T10:40:30Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Self-Correcting Quantum Many-Body Control using Reinforcement Learning
with Tensor Networks [0.0]
We present a novel framework for efficiently controlling quantum many-body systems based on reinforcement learning (RL)
We show that RL agents are capable of finding universal controls, of learning how to optimally steer previously unseen many-body states, and of adapting control protocols on-thefly when the quantum dynamics is subject to perturbations.
arXiv Detail & Related papers (2022-01-27T20:14:09Z) - Model predictive control for robust quantum state preparation [4.069849286089743]
We introduce model predictive control (MPC) for quantum control applications.
MPC inherits a natural degree of disturbance rejection by incorporating measurement feedback.
We show how MPC can be used to generate practical optimized control sequences.
arXiv Detail & Related papers (2022-01-14T00:55:41Z) - Model-Free Quantum Control with Reinforcement Learning [0.0]
We propose a circuit-based approach for training a reinforcement learning agent on quantum control tasks in a model-free way.
We show how to reward the learning agent using measurements of experimentally available observables.
This approach significantly outperforms widely used model-free methods in terms of sample efficiency.
arXiv Detail & Related papers (2021-04-29T17:53:26Z) - Control of Stochastic Quantum Dynamics with Differentiable Programming [0.0]
We propose a framework for the automated design of control schemes based on differentiable programming.
We apply this approach to state preparation and stabilization of a qubit subjected to homodyne detection.
Despite the resulting poor signal-to-noise ratio, we can train our controller to prepare and stabilize the qubit to a target state with a mean fidelity around 85%.
arXiv Detail & Related papers (2021-01-04T19:00:03Z) - Chance-Constrained Control with Lexicographic Deep Reinforcement
Learning [77.34726150561087]
This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes.
A lexicographic version of the well-known DeepRL algorithm DQN is also proposed and validated via simulations.
arXiv Detail & Related papers (2020-10-19T13:09:14Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.