論文の概要: Zero-Shot Image Compression with Diffusion-Based Posterior Sampling
- arxiv url: http://arxiv.org/abs/2407.09896v2
- Date: Mon, 14 Oct 2024 18:13:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 21:43:45.239415
- Title: Zero-Shot Image Compression with Diffusion-Based Posterior Sampling
- Title(参考訳): 拡散型後方サンプリングによるゼロショット画像圧縮
- Authors: Noam Elata, Tomer Michaeli, Michael Elad,
- Abstract要約: 本研究は、既存の事前学習拡散モデルで学習された画像を利用して、損失画像圧縮の課題を解決することで、このギャップに対処する。
PSC (Posterior Sampling-based Compression) は, ゼロショット拡散を用いた後部サンプルを用いた。
PSCは,画像圧縮のための事前学習拡散モデルと後部サンプルのさらなる探索を行うため,確立された手法と比較して,競争力のある結果が得られる。
- 参考スコア(独自算出の注目度): 34.50287066865267
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion models dominate the field of image generation, however they have yet to make major breakthroughs in the field of image compression. Indeed, while pre-trained diffusion models have been successfully adapted to a wide variety of downstream tasks, existing work in diffusion-based image compression require task specific model training, which can be both cumbersome and limiting. This work addresses this gap by harnessing the image prior learned by existing pre-trained diffusion models for solving the task of lossy image compression. This enables the use of the wide variety of publicly-available models, and avoids the need for training or fine-tuning. Our method, PSC (Posterior Sampling-based Compression), utilizes zero-shot diffusion-based posterior samplers. It does so through a novel sequential process inspired by the active acquisition technique "Adasense" to accumulate informative measurements of the image. This strategy minimizes uncertainty in the reconstructed image and allows for construction of an image-adaptive transform coordinated between both the encoder and decoder. PSC offers a progressive compression scheme that is both practical and simple to implement. Despite minimal tuning, and a simple quantization and entropy coding, PSC achieves competitive results compared to established methods, paving the way for further exploration of pre-trained diffusion models and posterior samplers for image compression.
- Abstract(参考訳): 拡散モデルは画像生成の分野を支配しているが、画像圧縮の分野ではまだ大きなブレークスルーを起こさない。
実際、事前訓練された拡散モデルは、様々な下流タスクにうまく適応しているが、拡散に基づく画像圧縮における既存の作業はタスク固有のモデルトレーニングを必要としており、これは煩雑で制限的である。
本研究は、既存の事前学習拡散モデルで学習された画像を利用して、損失画像圧縮の課題を解決することで、このギャップに対処する。
これにより、さまざまなパブリックモデルの使用が可能になり、トレーニングや微調整の必要がなくなる。
PSC (Posterior Sampling-based Compression) は, ゼロショット拡散を用いた後部サンプルを用いた。
能動的取得技術である「Adasense」にインスパイアされた新たなシーケンシャルなプロセスにより、画像の情報的計測を蓄積する。
この戦略は、再構成された画像の不確実性を最小化し、エンコーダとデコーダの両方で調整された画像適応変換の構築を可能にする。
PSCは、実用的で簡単に実装できるプログレッシブ圧縮スキームを提供する。
最小限のチューニングと単純な量子化とエントロピー符号化にもかかわらず、PSCは確立された手法と比較して競合的な結果を達成し、事前訓練された拡散モデルと画像圧縮のための後部サンプルのさらなる探索の道を開く。
関連論文リスト
- Lossy Image Compression with Foundation Diffusion Models [10.407650300093923]
本研究は,拡散を用いた量子化誤差の除去をデノナイジングタスクとして定式化し,送信された遅延画像の損失情報を復元する。
当社のアプローチでは,完全な拡散生成プロセスの10%未満の実行が可能であり,拡散モデルにアーキテクチャ的な変更は不要である。
論文 参考訳(メタデータ) (2024-04-12T16:23:42Z) - Correcting Diffusion-Based Perceptual Image Compression with Privileged End-to-End Decoder [49.01721042973929]
本稿では,特権付きエンド・ツー・エンド・エンド・デコーダ・モデルを用いた拡散型画像圧縮法を提案する。
従来の知覚圧縮法と比較して,歪みと知覚の両方において,本手法の優位性を示す実験を行った。
論文 参考訳(メタデータ) (2024-04-07T10:57:54Z) - Unifying Generation and Compression: Ultra-low bitrate Image Coding Via
Multi-stage Transformer [35.500720262253054]
本稿では,新しい画像生成圧縮(UIGC)パラダイムを導入し,生成と圧縮のプロセスを統合する。
UIGCフレームワークの重要な特徴は、トークン化にベクトル量子化(VQ)イメージモデルを採用することである。
実験では、既存のコーデックよりも知覚品質と人間の知覚において、提案されたUIGCフレームワークが優れていることを示した。
論文 参考訳(メタデータ) (2024-03-06T14:27:02Z) - A Training-Free Defense Framework for Robust Learned Image Compression [48.41990144764295]
本研究では,学習した画像圧縮モデルの敵攻撃に対する堅牢性について検討する。
簡単な画像変換関数をベースとした無訓練防御手法を提案する。
論文 参考訳(メタデータ) (2024-01-22T12:50:21Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
本稿では,トラクタブル確率モデル(TPM)の制約後部を正確に,かつ効率的に計算する能力を活用することを提案する。
具体的には、確率回路(PC)と呼ばれる表現型TPMのクラスを採用する。
提案手法は, 画像の全体的な品質とセマンティックコヒーレンスを, 計算オーバーヘッドを10%加えるだけで一貫的に改善できることを示す。
論文 参考訳(メタデータ) (2023-11-28T21:14:02Z) - Exploring Effective Mask Sampling Modeling for Neural Image Compression [171.35596121939238]
既存のニューラルイメージ圧縮手法の多くは、空間的冗長性を排除するために、ハイパープライアモデルやコンテキストモデルからのサイド情報に依存している。
近年の自然言語処理と高次視覚のための自己教師付き学習手法におけるマスクサンプリングモデルに着想を得て,ニューラル画像圧縮のための新しい事前学習戦略を提案する。
提案手法は,最先端画像圧縮法と比較して計算複雑性の低い競合性能を実現する。
論文 参考訳(メタデータ) (2023-06-09T06:50:20Z) - Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image
Compression [2.1485350418225244]
エンド・ツー・エンドのディープ・トレーニング可能なモデルは、ビデオや画像の従来の手作り圧縮技術の性能をほぼ上回っている。
本稿では,このアモート化ギャップを小さなコストで低減する,シンプルで効率的なインスタンスベースのパラメータ化手法を提案する。
論文 参考訳(メタデータ) (2022-09-02T11:43:45Z) - Post-Training Quantization for Cross-Platform Learned Image Compression [15.67527732099067]
学習した画像圧縮が従来の画像符号化技術より優れていることが確認されている。
考慮すべき最も重要な問題の1つは、非決定論的計算である。
本稿では,学習後量子化の導入によってこの問題を解決することを提案する。
論文 参考訳(メタデータ) (2022-02-15T15:41:12Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。