WojoodNER 2024: The Second Arabic Named Entity Recognition Shared Task
- URL: http://arxiv.org/abs/2407.09936v1
- Date: Sat, 13 Jul 2024 16:17:08 GMT
- Title: WojoodNER 2024: The Second Arabic Named Entity Recognition Shared Task
- Authors: Mustafa Jarrar, Nagham Hamad, Mohammed Khalilia, Bashar Talafha, AbdelRahim Elmadany, Muhammad Abdul-Mageed,
- Abstract summary: WojoodNER-2024 encompassed three subtasks: (i) Closed-Track Flat Fine-Grained NER, (ii) Closed-Track Nested Fine-Grained NER, and (iii) an Open-Track NER for the Israeli War on Gaza.
The winning teams achieved F-1 scores of 91% and 92% in the Flat Fine-Grained and Nested Fine-Grained Subtasks, respectively.
- Score: 13.55190646427114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present WojoodNER-2024, the second Arabic Named Entity Recognition (NER) Shared Task. In WojoodNER-2024, we focus on fine-grained Arabic NER. We provided participants with a new Arabic fine-grained NER dataset called wojoodfine, annotated with subtypes of entities. WojoodNER-2024 encompassed three subtasks: (i) Closed-Track Flat Fine-Grained NER, (ii) Closed-Track Nested Fine-Grained NER, and (iii) an Open-Track NER for the Israeli War on Gaza. A total of 43 unique teams registered for this shared task. Five teams participated in the Flat Fine-Grained Subtask, among which two teams tackled the Nested Fine-Grained Subtask and one team participated in the Open-Track NER Subtask. The winning teams achieved F-1 scores of 91% and 92% in the Flat Fine-Grained and Nested Fine-Grained Subtasks, respectively. The sole team in the Open-Track Subtask achieved an F-1 score of 73.7%.
Related papers
- mucAI at WojoodNER 2024: Arabic Named Entity Recognition with Nearest Neighbor Search [0.0]
We introduce Arabic KNN-NER, our submission to the Wojood NER Shared Task 2024 (ArabicNLP 2024)
In this paper, we tackle fine-grained flat-entity recognition for Arabic text, where we identify a single main entity and possibly zero or multiple sub-entities for each word.
Our submission achieved 91% on the test set on the WojoodFine dataset, placing Arabic KNN-NER on top of the leaderboard for the shared task.
arXiv Detail & Related papers (2024-08-07T09:34:55Z) - NADI 2024: The Fifth Nuanced Arabic Dialect Identification Shared Task [28.40134178913119]
We describe the findings of the fifth Nuanced Arabic Dialect Identification Shared Task (NADI 2024)
NADI 2024 targeted both dialect identification cast as a multi-label task and identification of the Arabic level of dialectness.
Winning teams achieved 50.57 Ftextsubscript1 on Subtask1, 0.1403 RMSE for Subtask2, and 20.44 BLEU in Subtask3, respectively.
arXiv Detail & Related papers (2024-07-06T01:18:58Z) - SemEval-2024 Shared Task 6: SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes [48.83290963506378]
This paper presents the results of the SHROOM, a shared task focused on detecting hallucinations.
We observe a number of key trends in how this approach was tackled.
While a majority of the teams did outperform our proposed baseline system, the performances of top-scoring systems are still consistent with a random handling of the more challenging items.
arXiv Detail & Related papers (2024-03-12T15:06:22Z) - ArAIEval Shared Task: Persuasion Techniques and Disinformation Detection
in Arabic Text [41.3267575540348]
We present an overview of the ArAIEval shared task, organized as part of the first Arabic 2023 conference co-located with EMNLP 2023.
ArAIEval offers two tasks over Arabic text: (i) persuasion technique detection, focusing on identifying persuasion techniques in tweets and news articles, and (ii) disinformation detection in binary and multiclass setups over tweets.
A total of 20 teams participated in the final evaluation phase, with 14 and 16 teams participating in Tasks 1 and 2, respectively.
arXiv Detail & Related papers (2023-11-06T15:21:19Z) - WojoodNER 2023: The First Arabic Named Entity Recognition Shared Task [13.55190646427114]
We present WojoodNER-2023, the first Arabic Named Entity Recognition (NER) Shared Task.
WojoodNER-2023 encompassed two Subtasks: FlatNER and NestedNER.
A total of 45 unique teams registered for this shared task, with 11 of them actively participating in the test phase.
arXiv Detail & Related papers (2023-10-24T19:50:07Z) - NADI 2023: The Fourth Nuanced Arabic Dialect Identification Shared Task [28.986040897360336]
We describe the findings of the fourth Nuanced Arabic Dialect Identification Shared Task (NADI 2023)
NADI 2023 targeted both dialect identification (Subtask 1) and dialect-to-MSA machine translation (Subtask 2 and Subtask 3).
We describe the methods employed by the participating teams and briefly offer an outlook for NADI.
arXiv Detail & Related papers (2023-10-24T18:41:24Z) - Gaussian Prior Reinforcement Learning for Nested Named Entity
Recognition [52.46740830977898]
We propose a novel seq2seq model named GPRL, which formulates the nested NER task as an entity triplet sequence generation process.
Experiments on three nested NER datasets demonstrate that GPRL outperforms previous nested NER models.
arXiv Detail & Related papers (2023-05-12T05:55:34Z) - The 7th AI City Challenge [87.23137854688389]
The AI City Challenge's seventh edition emphasizes two domains at the intersection of computer vision and artificial intelligence.
The 2023 challenge had five tracks, which drew a record-breaking number of participation requests from 508 teams across 46 countries.
The participating teams' top performances established strong baselines and even outperformed the state-of-the-art in the proposed challenge tracks.
arXiv Detail & Related papers (2023-04-15T08:02:16Z) - NADI 2022: The Third Nuanced Arabic Dialect Identification Shared Task [16.688997360734472]
Third Nuanced Arabic Dialect Identification Shared Task (NADI 2022)
NADI 2022 targeted both dialect identification (Subtask 1) and dialectal sentiment analysis (Subtask 2) at the country level.
Winning team achieved 27.06 F1 on Subtask 1 and F1=75.16 on Subtask 2.
arXiv Detail & Related papers (2022-10-18T04:31:05Z) - UrduFake@FIRE2021: Shared Track on Fake News Identification in Urdu [55.41644538483948]
This study reports the second shared task named as UrduFake@FIRE2021 on identifying fake news detection in Urdu language.
The proposed systems were based on various count-based features and used different classifiers as well as neural network architectures.
The gradient descent (SGD) algorithm outperformed other classifiers and achieved 0.679 F-score.
arXiv Detail & Related papers (2022-07-11T19:15:04Z) - Retrospective on the 2021 BASALT Competition on Learning from Human
Feedback [92.37243979045817]
The goal of the competition was to promote research towards agents that use learning from human feedback (LfHF) techniques to solve open-world tasks.
Rather than mandating the use of LfHF techniques, we described four tasks in natural language to be accomplished in the video game Minecraft.
Teams developed a diverse range of LfHF algorithms across a variety of possible human feedback types.
arXiv Detail & Related papers (2022-04-14T17:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.