Correlating Power Outage Spread with Infrastructure Interdependencies During Hurricanes
- URL: http://arxiv.org/abs/2407.09962v1
- Date: Sat, 13 Jul 2024 18:05:07 GMT
- Title: Correlating Power Outage Spread with Infrastructure Interdependencies During Hurricanes
- Authors: Avishek Bose, Sangkeun Lee, Narayan Bhusal, Supriya Chinthavali,
- Abstract summary: This study investigates the spread of power outages during hurricanes by analyzing the correlation between the network of critical infrastructure and outage propagation.
Our analysis reveals a consistent positive correlation between the extent of critical infrastructure components accessible within a certain number of steps.
This insight suggests that understanding the interconnectedness among critical infrastructure elements is key to identifying areas indirectly affected by extreme weather events.
- Score: 5.2878398959711985
- License:
- Abstract: Power outages caused by extreme weather events, such as hurricanes, can significantly disrupt essential services and delay recovery efforts, underscoring the importance of enhancing our infrastructure's resilience. This study investigates the spread of power outages during hurricanes by analyzing the correlation between the network of critical infrastructure and outage propagation. We leveraged datasets from Hurricanemapping.com, the North American Energy Resilience Model Interdependency Analysis (NAERM-IA), and historical power outage data from the Oak Ridge National Laboratory (ORNL)'s EAGLE-I system. Our analysis reveals a consistent positive correlation between the extent of critical infrastructure components accessible within a certain number of steps (k-hop distance) from initial impact areas and the occurrence of power outages in broader regions. This insight suggests that understanding the interconnectedness among critical infrastructure elements is key to identifying areas indirectly affected by extreme weather events.
Related papers
- Establishing Nationwide Power System Vulnerability Index across US Counties Using Interpretable Machine Learning [7.883500674930901]
We collected 179 million power outage records at 15-minute intervals across 3022 US contiguous counties from 2014 to 2023.
We developed a power system vulnerability assessment framework based on three dimensions (intensity, frequency, and duration) and applied interpretable machine learning models (XGBoost and SHAP) to compute Power System Vulnerability Index (PSVI) at the county level.
We identified 318 counties across 45 states as hotspots for high power system vulnerability, particularly in the West Coast (California and Washington), the East Coast (Florida and the Northeast area), the Great Lakes megalopolis (Chicago-Detroit metropolitan areas), and the
arXiv Detail & Related papers (2024-10-11T06:37:05Z) - Multimodal Power Outage Prediction for Rapid Disaster Response and Resource Allocation [42.97753005297686]
underrepresented communities that are most affected often receive infrastructure improvements last.
We propose a novel visualtemporal framework for predicting severity of nighttime lights (LNT), power outage and location before and after major hurricanes.
Our work brings awareness to underrepresented areas in urgent need of enhanced energy infrastructure, such as future photovoltaic (PV) deployment.
arXiv Detail & Related papers (2024-09-14T21:35:29Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
We introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL)
Our approach automatically identifies crucial observation-action steps associated with key variables using attention mechanisms.
It constructs the causal graph connecting these steps, which guides the agent towards observation-action pairs with greater causal influence on task completion.
arXiv Detail & Related papers (2024-07-17T09:45:27Z) - Critical Learning Periods Emerge Even in Deep Linear Networks [102.89011295243334]
Critical learning periods are periods early in development where temporary sensory deficits can have a permanent effect on behavior and learned representations.
Despite the radical differences between biological and artificial networks, critical learning periods have been empirically observed in both systems.
arXiv Detail & Related papers (2023-08-23T16:01:50Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - IIVA: A Simulation Based Generalized Framework for Interdependent
Infrastructure Vulnerability Assessment [0.0]
This paper proposes a novel infrastructure vulnerability assessment framework that accounts for: various types of infrastructure interdependencies.
It is observed that higher the initial failure rate of the components, higher is the vulnerability of the infrastructure.
arXiv Detail & Related papers (2022-12-13T20:37:03Z) - Pitfalls of Climate Network Construction: A Statistical Perspective [13.623860700196625]
We simulate time-dependent isotropic random fields on the sphere and apply common network construction techniques.
We find several ways in which the uncertainty stemming from the estimation procedure has major impact on network characteristics.
arXiv Detail & Related papers (2022-11-05T11:59:55Z) - Impact of Coastal Hazards on Residents Spatial Accessibility to Health
Services [0.0]
This study provides a framework to examine how the disruption of transportation networks during and after a hurricane can impact access to health services over time.
Inundation and structural failure are used to quantify post-hurricane accessibility at short- and long-term temporal scales.
Results indicate changes in the accessibility scores of specific areas depending on the temporal scale of interest and intensity of the hazard scenario.
arXiv Detail & Related papers (2020-05-30T13:47:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.