Practicality of quantum adiabatic algorithm for chemistry applications
- URL: http://arxiv.org/abs/2407.09993v1
- Date: Sat, 13 Jul 2024 20:11:00 GMT
- Title: Practicality of quantum adiabatic algorithm for chemistry applications
- Authors: Etienne Granet, Khaldoon Ghanem, Henrik Dreyer,
- Abstract summary: Adiabatic state preparation has received considerably less interest than variational approaches for the preparation of low-energy electronic structure states.
We show that a proposed randomized algorithm, which implements exact adiabatic evolution without heating, can overcome this problem.
We develop three methods for measuring the energy of the prepared state in an efficient and noise-resilient manner.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite its simplicity and strong theoretical guarantees, adiabatic state preparation has received considerably less interest than variational approaches for the preparation of low-energy electronic structure states. Two major reasons for this are the large number of gates required for Trotterising time-dependent electronic structure Hamiltonians, as well as discretisation errors heating the state. We show that a recently proposed randomized algorithm, which implements exact adiabatic evolution without heating and with far fewer gates than Trotterisation, can overcome this problem. We develop three methods for measuring the energy of the prepared state in an efficient and noise-resilient manner, yielding chemically accurate results on a 4-qubit molecule in the presence of realistic gate noise, without the need for error mitigation. These findings suggest that adiabatic approaches to state preparation could play a key role in quantum chemistry simulations both in the era of noisy as well as error-corrected quantum computers.
Related papers
- Shortcuts for Adiabatic and Variational Algorithms in Molecular Simulation [3.5621685463862356]
We introduce shortcuts-to-adiabaticity techniques into adiabatic and variational algorithms for calculating the molecular ground state.
Our approach achieves comparable accuracy to other established ansatzes, while enhancing the potential for applications in material science, drug discovery, and molecular simulations.
arXiv Detail & Related papers (2024-07-30T16:30:22Z) - Exploring Ground States of Fermi-Hubbard Model on Honeycomb Lattices with Counterdiabaticity [2.756976915658684]
Shortcuts to adiabaticity by counter-diabatic driving serve to accelerate these processes by suppressing energy excitations.
We develop variational quantum algorithms incorporating the auxiliary counterdiabatic interactions, comparing them with digitized adiabatic algorithms.
These algorithms are then implemented on gate-based quantum circuits to explore the ground states of the Fermi-Hubbard model on honeycomb lattices.
arXiv Detail & Related papers (2024-05-15T10:05:01Z) - The quantum adiabatic algorithm suppresses the proliferation of errors [0.29998889086656577]
We analyze the proliferation of a single error event in the adiabatic algorithm.
Our findings indicate that low energy states could remain attainable even in the presence of a single error event.
arXiv Detail & Related papers (2024-04-23T18:00:00Z) - Resource-Efficient Quantum Circuits for Molecular Simulations: A Case
Study of Umbrella Inversion in Ammonia [1.439738350540859]
We develop a novel quantum circuit that reduces the required circuit depth and number of two-qubit entangling gates by about 60%.
Even in the presence of device noise, these novel shallower circuits yielded substantially low error rates.
arXiv Detail & Related papers (2023-12-07T11:30:09Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Quantum thermodynamic methods to purify a qubit on a quantum processing
unit [68.8204255655161]
We report on a quantum thermodynamic method to purify a qubit on a quantum processing unit equipped with identical qubits.
Our starting point is a three qubit design that emulates the well known two qubit swap engine.
We implement it on a publicly available superconducting qubit based QPU, and observe a purification capability down to 200 mK.
arXiv Detail & Related papers (2022-01-31T16:13:57Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Variationally Scheduled Quantum Simulation [0.0]
We investigate a variational method for determining the optimal scheduling procedure within the context of adiabatic state preparation.
In the absence of quantum error correction, running a quantum device for any meaningful amount of time causes a system to become susceptible to the loss of relevant information.
Our variational method is found to exhibit resilience against control errors, which are commonly encountered within the realm of quantum computing.
arXiv Detail & Related papers (2020-03-22T14:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.