Variationally Scheduled Quantum Simulation
- URL: http://arxiv.org/abs/2003.09913v3
- Date: Thu, 26 Aug 2021 18:01:40 GMT
- Title: Variationally Scheduled Quantum Simulation
- Authors: Shunji Matsuura, Samantha Buck, Valentin Senicourt, Arman Zaribafiyan
- Abstract summary: We investigate a variational method for determining the optimal scheduling procedure within the context of adiabatic state preparation.
In the absence of quantum error correction, running a quantum device for any meaningful amount of time causes a system to become susceptible to the loss of relevant information.
Our variational method is found to exhibit resilience against control errors, which are commonly encountered within the realm of quantum computing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eigenstate preparation is ubiquitous in quantum computing, and a standard
approach for generating the lowest-energy states of a given system is by
employing adiabatic state preparation (ASP). In the present work, we
investigate a variational method for determining the optimal scheduling
procedure within the context of ASP. In the absence of quantum error
correction, running a quantum device for any meaningful amount of time causes a
system to become susceptible to the loss of relevant information. Therefore, if
accurate quantum states are to be successfully generated, it is crucial to find
techniques that shorten the time of individual runs during iterations of
annealing. We demonstrate our variational method toward this end by
investigating the hydrogen and P4 molecules, as well as the Ising model problem
on a two-dimensional triangular lattice. In both cases, the time required for
one iteration to produce accurate results is reduced by several orders of
magnitude in comparison to what is achievable via standard ASP. As a result,
the required quantum coherence time to perform such a calculation on a quantum
device becomes much less stringent with the implementation of this algorithm.
In addition, our variational method is found to exhibit resilience against
control errors, which are commonly encountered within the realm of quantum
computing.
Related papers
- Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Compilation of a simple chemistry application to quantum error correction primitives [44.99833362998488]
We estimate the resources required to fault-tolerantly perform quantum phase estimation on a minimal chemical example.
We find that implementing even a simple chemistry circuit requires 1,000 qubits and 2,300 quantum error correction rounds.
arXiv Detail & Related papers (2023-07-06T18:00:10Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Multistate Transition Dynamics by Strong Time-Dependent Perturbation in
NISQ era [0.0]
We develop a quantum computing scheme utilizing McLachlan variational principle in a hybrid quantum-classical algorithm.
Results for transition probabilities are obtained with accuracy better than 1%, as established by comparison to the benchmark data.
arXiv Detail & Related papers (2021-12-13T00:49:15Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Reducing runtime and error in VQE using deeper and noisier quantum
circuits [0.0]
A core of many quantum algorithms including VQE, can be improved in terms of precision and accuracy by using a technique we call Robust Amplitude Estimation.
By using deeper, and therefore more error-prone, quantum circuits, we realize more accurate quantum computations in less time.
This technique may be used to speed up quantum computations into the regime of early fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-10-20T17:11:29Z) - Mitigating algorithmic errors in quantum optimization through energy
extrapolation [4.426846282723645]
We present a scalable extrapolation approach to mitigating a non-negligible error in estimates of the ground state energy.
We have verified the validity of these approaches through both numerical simulation and experiments on an IBM quantum computer.
arXiv Detail & Related papers (2021-09-16T17:39:11Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum computed moments correction to variational estimates [0.0]
We present an approach in which problem complexity is transferred to dynamic quantities computed on the quantum processor.
With system dynamics encoded in the moments the burden on the trial-state quantum circuit depth is eased.
arXiv Detail & Related papers (2020-09-28T08:39:05Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.