論文の概要: Semantic Understanding and Data Imputation using Large Language Model to Accelerate Recommendation System
- arxiv url: http://arxiv.org/abs/2407.10078v1
- Date: Sun, 14 Jul 2024 04:53:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:38:33.739717
- Title: Semantic Understanding and Data Imputation using Large Language Model to Accelerate Recommendation System
- Title(参考訳): 推薦システムの高速化を目的とした大規模言語モデルを用いた意味理解とデータインプット
- Authors: Zhicheng Ding, Jiahao Tian, Zhenkai Wang, Jinman Zhao, Siyang Li,
- Abstract要約: そこで本稿では,LLM(Large-Tune Large Language Model)を提案する。
大量のテキストで訓練されたLLMは、データ間の複雑な関係を理解し、行方不明の情報をインテリジェントに埋めることができる。
この強化されたデータは、より正確でパーソナライズされた提案を生成するためにレコメンデーションシステムによって使用される。
- 参考スコア(独自算出の注目度): 3.853804391135035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to address the challenge of sparse and missing data in recommendation systems, a significant hurdle in the age of big data. Traditional imputation methods struggle to capture complex relationships within the data. We propose a novel approach that fine-tune Large Language Model (LLM) and use it impute missing data for recommendation systems. LLM which is trained on vast amounts of text, is able to understand complex relationship among data and intelligently fill in missing information. This enriched data is then used by the recommendation system to generate more accurate and personalized suggestions, ultimately enhancing the user experience. We evaluate our LLM-based imputation method across various tasks within the recommendation system domain, including single classification, multi-classification, and regression compared to traditional data imputation methods. By demonstrating the superiority of LLM imputation over traditional methods, we establish its potential for improving recommendation system performance.
- Abstract(参考訳): 本稿では,ビッグデータ時代の大きなハードルであるレコメンデーションシステムにおけるスパースデータと欠落データの問題に対処することを目的とする。
従来の計算手法は、データ内の複雑な関係を捉えるのに苦労する。
そこで本稿では,LLM(Large-Tune Large Language Model)を提案する。
大量のテキストで訓練されたLLMは、データ間の複雑な関係を理解し、行方不明の情報をインテリジェントに埋めることができる。
このリッチなデータはレコメンデーションシステムによってより正確でパーソナライズされた提案を生成するために使用され、最終的にはユーザエクスペリエンスが向上する。
我々は,従来のデータ計算手法と比較して,単一の分類,複数分類,回帰を含む,レコメンデーションシステム領域内の様々なタスクを対象としたLCMベースの計算手法を評価した。
従来の手法よりもLCM計算の方が優れていることを示すことにより,推薦システムの性能向上の可能性を確立した。
関連論文リスト
- Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
大言語モデル(LLM)は、その人気に関係なく、項目間の意味的関係を理解する能力を持つ。
LLMEmbは、LCMを利用してアイテム埋め込みを作成し、シークエンシャル・レコメンダ・システムの性能を高める革新的な技術である。
論文 参考訳(メタデータ) (2024-09-30T03:59:06Z) - MMREC: LLM Based Multi-Modal Recommender System [2.3113916776957635]
本稿では,Large Language Models(LLM)とディープラーニング技術を活用して,レコメンデータシステムを強化する新しい手法を提案する。
提案フレームワークは,マルチモーダル情報処理を取り入れたレコメンデーションの精度と妥当性を,統一された潜在空間表現を用いて向上することを目的としている。
論文 参考訳(メタデータ) (2024-08-08T04:31:29Z) - Semantic-Enhanced Relational Metric Learning for Recommender Systems [27.330164862413184]
近年,知識グラフの翻訳機構に触発された推薦コミュニティにおいて,計量学習手法が注目されている。
本稿では,推薦システムにおける問題に対処するためのセマンティック拡張メトリックラーニングフレームワークを提案する。
具体的には、まず、豊富な特徴とパーソナライズされたユーザー嗜好を含む対象レビューから意味信号を抽出する。
次に、抽出した意味信号を利用して、新しい回帰モデルを設計し、元の関係に基づくトレーニングプロセスの識別能力を向上させる。
論文 参考訳(メタデータ) (2024-06-07T11:54:50Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
LLM(Large Language Models)は、人間に似たテキストの理解と生成に優れた言語モデルである。
本稿では,言語モデル(LLM)と情報検索(IR)システムの統合戦略について検討する。
論文 参考訳(メタデータ) (2023-11-21T02:01:01Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - Representation Learning with Large Language Models for Recommendation [34.46344639742642]
本稿では,大規模言語モデル (LLM) を用いた表現学習によるレコメンデータの強化を目的とした,モデルに依存しないフレームワーク RLMRec を提案する。
RLMRecには補助的なテキスト信号が組み込まれており、LLMが権限を持つユーザ/イテムプロファイリングパラダイムを開発し、LLMの意味空間と協調的関係信号の表現空間を整合させる。
論文 参考訳(メタデータ) (2023-10-24T15:51:13Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - Recommendation as Instruction Following: A Large Language Model
Empowered Recommendation Approach [83.62750225073341]
我々は、大規模言語モデル(LLM)による指示としてレコメンデーションを考える。
まず、ユーザの好み、意図、タスクフォーム、コンテキストを自然言語で記述するための一般的な命令形式を設計する。
そして、39の命令テンプレートを手動で設計し、大量のユーザ個人化された命令データを自動的に生成する。
論文 参考訳(メタデータ) (2023-05-11T17:39:07Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z) - Recommendation system using a deep learning and graph analysis approach [1.2183405753834562]
本稿では,行列係数化とグラフ解析に基づく新しい推薦手法を提案する。
さらに,ディープオートエンコーダを利用してユーザやアイテムの潜伏要因を初期化し,ディープ埋め込み手法によってユーザの潜伏要因をユーザ信頼グラフから収集する。
論文 参考訳(メタデータ) (2020-04-17T08:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。