論文の概要: A Self-Supervised Learning Pipeline for Demographically Fair Facial Attribute Classification
- arxiv url: http://arxiv.org/abs/2407.10104v1
- Date: Sun, 14 Jul 2024 07:11:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:28:46.614993
- Title: A Self-Supervised Learning Pipeline for Demographically Fair Facial Attribute Classification
- Title(参考訳): 自己監督型顔属性分類のための学習パイプライン
- Authors: Sreeraj Ramachandran, Ajita Rattani,
- Abstract要約: 本稿では,人口統計学的に公平な顔属性分類のための完全自己教師付きパイプラインを提案する。
我々は、事前訓練されたエンコーダ、多様なデータキュレーション技術、メタラーニングに基づく重み付きコントラスト学習を通じて、完全にラベル付けされていないデータを活用する。
- 参考スコア(独自算出の注目度): 3.5092955099876266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Published research highlights the presence of demographic bias in automated facial attribute classification. The proposed bias mitigation techniques are mostly based on supervised learning, which requires a large amount of labeled training data for generalizability and scalability. However, labeled data is limited, requires laborious annotation, poses privacy risks, and can perpetuate human bias. In contrast, self-supervised learning (SSL) capitalizes on freely available unlabeled data, rendering trained models more scalable and generalizable. However, these label-free SSL models may also introduce biases by sampling false negative pairs, especially at low-data regimes 200K images) under low compute settings. Further, SSL-based models may suffer from performance degradation due to a lack of quality assurance of the unlabeled data sourced from the web. This paper proposes a fully self-supervised pipeline for demographically fair facial attribute classifiers. Leveraging completely unlabeled data pseudolabeled via pre-trained encoders, diverse data curation techniques, and meta-learning-based weighted contrastive learning, our method significantly outperforms existing SSL approaches proposed for downstream image classification tasks. Extensive evaluations on the FairFace and CelebA datasets demonstrate the efficacy of our pipeline in obtaining fair performance over existing baselines. Thus, setting a new benchmark for SSL in the fairness of facial attribute classification.
- Abstract(参考訳): 公開された研究は、自動的な顔属性分類における人口統計バイアスの存在を強調している。
提案手法は主に教師付き学習に基づいており、一般化性と拡張性のために大量のラベル付きトレーニングデータを必要とする。
しかし、ラベル付きデータは制限され、厳格なアノテーションを必要とし、プライバシーのリスクを生じさせ、人間の偏見を持続させることができる。
対照的に、自己教師付き学習(SSL)は、無償で利用可能なラベル付きデータに便乗し、トレーニングされたモデルをよりスケーラブルで汎用的にレンダリングする。
しかし、これらのラベルフリーSSLモデルは、低い計算条件下で偽陰性ペア(特に低データレシージャ200Kイメージ)をサンプリングすることによってバイアスを生じさせる可能性がある。
さらに、SSLベースのモデルでは、Webから出力されたラベルなしデータの品質保証が欠如しているため、パフォーマンスが低下する可能性がある。
本稿では,人口統計学的に公平な顔属性分類のための完全自己教師型パイプラインを提案する。
事前学習したエンコーダ、多様なデータキュレーション手法、メタラーニングに基づく重み付きコントラスト学習により、ダウンストリーム画像分類タスクにおいて提案された既存のSSLアプローチを著しく上回っている。
FairFaceとCelebAデータセットの大規模な評価は、既存のベースラインよりも公正なパフォーマンスを得る上で、パイプラインの有効性を示しています。
したがって、顔属性分類の公平性において、SSLの新しいベンチマークを設定する。
関連論文リスト
- Towards the Mitigation of Confirmation Bias in Semi-supervised Learning: a Debiased Training Perspective [6.164100243945264]
半教師付き学習(SSL)は、モデルが特定のクラスを不均等に好むという、一般的に確認バイアスを示す。
SSLのデバイアスドトレーニングのための統合フレームワークであるTaMatchを紹介します。
TaMatchは,様々な課題の画像分類タスクにおいて,既存の最先端手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-09-26T21:50:30Z) - A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
自己教師付き学習(SSL)は、データ自体が監視を提供する機械学習アプローチであり、外部ラベルの必要性を排除している。
SSLの分類に基づく評価プロトコルがどのように相関し、異なるデータセットのダウンストリーム性能を予測するかを検討する。
論文 参考訳(メタデータ) (2024-07-16T23:17:36Z) - A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
半教師付き学習(SSL)はコンピュータビジョンにおける実践的な課題である。
Pseudo-label (PL) メソッド、例えば FixMatch や FreeMatch は SSL で State of The Art (SOTA) のパフォーマンスを取得する。
本稿では,複数の下位PLを理論的に保証された非偏りと低分散のPLに集約する,軽量なチャネルベースアンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:49:37Z) - Leveraging vision-language models for fair facial attribute classification [19.93324644519412]
汎用視覚言語モデル(英: General-purpose Vision-Language Model, VLM)は、共通感性属性のための豊富な知識源である。
我々は,VLM予測値と人間定義属性分布の対応関係を解析した。
複数のベンチマークの顔属性分類データセットの実験は、既存の教師なしベースラインよりもモデルの公平性の向上を示している。
論文 参考訳(メタデータ) (2024-03-15T18:37:15Z) - Evaluating Fairness in Self-supervised and Supervised Models for
Sequential Data [10.626503137418636]
自己教師型学習(SSL)は,大規模モデルのデファクトトレーニングパラダイムとなっている。
本研究では,事前学習と微調整が公正性に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2024-01-03T09:31:43Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
クラス非依存動作予測のための半教師あり学習の可能性について検討する。
我々のフレームワークは一貫性に基づく自己学習パラダイムを採用しており、ラベルのないデータからモデルを学習することができる。
本手法は,弱さと完全教師付き手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2023-12-13T09:32:50Z) - Progressive Feature Adjustment for Semi-supervised Learning from
Pretrained Models [39.42802115580677]
半教師付き学習(SSL)はラベル付きデータとラベルなしデータの両方を利用して予測モデルを構築することができる。
近年の文献では、事前訓練されたモデルで最先端のSSLを適用しても、トレーニングデータの潜在能力を最大限に発揮できないことが示唆されている。
本稿では,ラベルの誤りに敏感でない特徴抽出器を更新するために,非ラベルデータから擬似ラベルを使用することを提案する。
論文 参考訳(メタデータ) (2023-09-09T01:57:14Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
本稿では,特徴のランダムなサブセットを乱してビューを形成するコントラスト学習手法であるSCARFを提案する。
SCARFは既存の戦略を補完し、オートエンコーダのような代替手段より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-29T08:08:33Z) - A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained
Classification [38.68079253627819]
本ベンチマークは, avesおよびfungi分類のクラスをサンプリングして得られた2つの細粒度分類データセットからなる。
最近提案されたSSLメソッドは大きなメリットをもたらし、深いネットワークがゼロから訓練されたときにクラス外のデータを効果的にパフォーマンスを向上させることができます。
我々の研究は、現実的データセットの専門家による半教師付き学習は、現在文学で普及しているものとは異なる戦略を必要とする可能性があることを示唆している。
論文 参考訳(メタデータ) (2021-04-01T17:59:41Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
セルフチューニングは、データ効率のよいディープラーニングを可能にする新しいアプローチである。
ラベル付きおよびラベルなしデータの探索と事前訓練されたモデルの転送を統一する。
SSLとTLの5つのタスクをシャープなマージンで上回ります。
論文 参考訳(メタデータ) (2021-02-25T14:56:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。