A Self-Supervised Learning Pipeline for Demographically Fair Facial Attribute Classification
- URL: http://arxiv.org/abs/2407.10104v1
- Date: Sun, 14 Jul 2024 07:11:57 GMT
- Title: A Self-Supervised Learning Pipeline for Demographically Fair Facial Attribute Classification
- Authors: Sreeraj Ramachandran, Ajita Rattani,
- Abstract summary: This paper proposes a fully self-supervised pipeline for demographically fair facial attribute classification.
We leverage completely unlabeled data pseudolabeled via pre-trained encoders, diverse data curation techniques, and meta-learning-based weighted contrastive learning.
- Score: 3.5092955099876266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Published research highlights the presence of demographic bias in automated facial attribute classification. The proposed bias mitigation techniques are mostly based on supervised learning, which requires a large amount of labeled training data for generalizability and scalability. However, labeled data is limited, requires laborious annotation, poses privacy risks, and can perpetuate human bias. In contrast, self-supervised learning (SSL) capitalizes on freely available unlabeled data, rendering trained models more scalable and generalizable. However, these label-free SSL models may also introduce biases by sampling false negative pairs, especially at low-data regimes 200K images) under low compute settings. Further, SSL-based models may suffer from performance degradation due to a lack of quality assurance of the unlabeled data sourced from the web. This paper proposes a fully self-supervised pipeline for demographically fair facial attribute classifiers. Leveraging completely unlabeled data pseudolabeled via pre-trained encoders, diverse data curation techniques, and meta-learning-based weighted contrastive learning, our method significantly outperforms existing SSL approaches proposed for downstream image classification tasks. Extensive evaluations on the FairFace and CelebA datasets demonstrate the efficacy of our pipeline in obtaining fair performance over existing baselines. Thus, setting a new benchmark for SSL in the fairness of facial attribute classification.
Related papers
- Towards the Mitigation of Confirmation Bias in Semi-supervised Learning: a Debiased Training Perspective [6.164100243945264]
Semi-supervised learning (SSL) commonly exhibits confirmation bias, where models disproportionately favor certain classes.
We introduce TaMatch, a unified framework for debiased training in SSL.
We show that TaMatch significantly outperforms existing state-of-the-art methods across a range of challenging image classification tasks.
arXiv Detail & Related papers (2024-09-26T21:50:30Z) - A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels.
We study how classification-based evaluation protocols for SSL correlate and how well they predict downstream performance on different dataset types.
arXiv Detail & Related papers (2024-07-16T23:17:36Z) - A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
Semi-supervised learning (SSL) is a practical challenge in computer vision.
Pseudo-label (PL) methods, e.g., FixMatch and FreeMatch, obtain the State Of The Art (SOTA) performances in SSL.
We propose a lightweight channel-based ensemble method to consolidate multiple inferior PLs into the theoretically guaranteed unbiased and low-variance one.
arXiv Detail & Related papers (2024-03-27T09:49:37Z) - Leveraging vision-language models for fair facial attribute classification [19.93324644519412]
General-purpose vision-language model (VLM) is a rich knowledge source for common sensitive attributes.
We analyze the correspondence between VLM predicted and human defined sensitive attribute distribution.
Experiments on multiple benchmark facial attribute classification datasets show fairness gains of the model over existing unsupervised baselines.
arXiv Detail & Related papers (2024-03-15T18:37:15Z) - Evaluating Fairness in Self-supervised and Supervised Models for
Sequential Data [10.626503137418636]
Self-supervised learning (SSL) has become the de facto training paradigm of large models.
This study explores the impact of pre-training and fine-tuning strategies on fairness.
arXiv Detail & Related papers (2024-01-03T09:31:43Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
We study the potential of semi-supervised learning for class-agnostic motion prediction.
Our framework adopts a consistency-based self-training paradigm, enabling the model to learn from unlabeled data.
Our method exhibits comparable performance to weakly and some fully supervised methods.
arXiv Detail & Related papers (2023-12-13T09:32:50Z) - Progressive Feature Adjustment for Semi-supervised Learning from
Pretrained Models [39.42802115580677]
Semi-supervised learning (SSL) can leverage both labeled and unlabeled data to build a predictive model.
Recent literature suggests that naively applying state-of-the-art SSL with a pretrained model fails to unleash the full potential of training data.
We propose to use pseudo-labels from the unlabelled data to update the feature extractor that is less sensitive to incorrect labels.
arXiv Detail & Related papers (2023-09-09T01:57:14Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained
Classification [38.68079253627819]
Our benchmark consists of two fine-grained classification datasets obtained by sampling classes from the Aves and Fungi taxonomy.
We find that recently proposed SSL methods provide significant benefits, and can effectively use out-of-class data to improve performance when deep networks are trained from scratch.
Our work suggests that semi-supervised learning with experts on realistic datasets may require different strategies than those currently prevalent in the literature.
arXiv Detail & Related papers (2021-04-01T17:59:41Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
Self-Tuning is a novel approach to enable data-efficient deep learning.
It unifies the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
It outperforms its SSL and TL counterparts on five tasks by sharp margins.
arXiv Detail & Related papers (2021-02-25T14:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.