論文の概要: Look Within, Why LLMs Hallucinate: A Causal Perspective
- arxiv url: http://arxiv.org/abs/2407.10153v1
- Date: Sun, 14 Jul 2024 10:47:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:19:02.347289
- Title: Look Within, Why LLMs Hallucinate: A Causal Perspective
- Title(参考訳): LLMが幻覚する理由:因果的視点
- Authors: He Li, Haoang Chi, Mingyu Liu, Wenjing Yang,
- Abstract要約: 大規模言語モデル(LLM)は、生成人工知能のマイルストーンであり、テキスト理解と生成タスクにおいて大きな成功を収めている。
LLMは深刻な幻覚障害に悩まされ、LLMの実用化に重大な課題が生じた。
LLMの自己注意層に介入し,その構造とサイズをそのまま維持する手法を提案する。
- 参考スコア(独自算出の注目度): 16.874588396996764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of large language models (LLMs) is a milestone in generative artificial intelligence, achieving significant success in text comprehension and generation tasks. Despite the tremendous success of LLMs in many downstream tasks, they suffer from severe hallucination problems, posing significant challenges to the practical applications of LLMs. Most of the works about LLMs' hallucinations focus on data quality. Self-attention is a core module in transformer-based LLMs, while its potential relationship with LLMs' hallucination has been hardly investigated. To fill this gap, we study this problem from a causal perspective. We propose a method to intervene in LLMs' self-attention layers and maintain their structures and sizes intact. Specifically, we disable different self-attention layers in several popular open-source LLMs and then compare their degrees of hallucination with the original ones. We evaluate the intervened LLMs on hallucination assessment benchmarks and conclude that disabling some specific self-attention layers in the front or tail of the LLMs can alleviate hallucination issues. The study paves a new way for understanding and mitigating LLMs' hallucinations.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は、生成人工知能におけるマイルストーンであり、テキスト理解と生成タスクにおいて大きな成功を収めている。
多くの下流タスクにおいてLLMが驚くほど成功したにもかかわらず、彼らは深刻な幻覚障害に悩まされ、LLMの実践的応用に重大な課題を提起した。
LLMの幻覚に関する研究の多くは、データ品質に焦点を当てている。
自己注意はトランスをベースとしたLLMの中核モジュールであるが,LLMの幻覚との関連性はほとんど研究されていない。
このギャップを埋めるために、この問題を因果的観点から研究する。
LLMの自己注意層に介入し,その構造とサイズをそのまま維持する手法を提案する。
具体的には、複数の人気のあるオープンソース LLM で異なる自己注意層を無効にし、その幻覚の度合いを元のものと比較する。
本研究は,幻覚評価ベンチマークの介入したLLMを評価した結果,LLMの前部や尾部の特定の自己注意層を無効にすることで幻覚の問題を緩和できるという結論に達した。
この研究は、LLMの幻覚を理解し緩和するための新しい方法である。
関連論文リスト
- MedHalu: Hallucinations in Responses to Healthcare Queries by Large Language Models [26.464489158584463]
患者からのリアルタイム医療クエリに対するLCM生成反応における幻覚の先駆的な研究を行う。
MedHaluは、健康関連トピックが多種多様である、注意深く構築された医療幻覚データセットである。
MedHaluDetect フレームワークを導入し,幻覚検出における様々な LLM の機能を評価する。
論文 参考訳(メタデータ) (2024-09-29T00:09:01Z) - LLM Internal States Reveal Hallucination Risk Faced With a Query [62.29558761326031]
人間は、クエリに直面したとき、私たちが知らないことを認識できる自己認識プロセスを持っています。
本稿では,大規模言語モデルが応答生成に先立って,自身の幻覚リスクを推定できるかどうかを検討する。
確率推定器により, LLM自己評価を利用して, 平均幻覚推定精度84.32%を達成する。
論文 参考訳(メタデータ) (2024-07-03T17:08:52Z) - Does Object Grounding Really Reduce Hallucination of Large Vision-Language Models? [53.89380284760555]
大型視覚言語モデル(LVLM)は、画像に見つからない概念に言及するキャプションを生成する。
これらの幻覚は、LVLMの信頼性を損なうものであり、ユビキタス採用の主な障害であることは間違いない。
最近の研究は、画像領域やオブジェクトをテキストスパンに明示的にアライメントする、接地目的の追加は、LVLM幻覚の量を減らすことを示唆している。
論文 参考訳(メタデータ) (2024-06-20T16:56:11Z) - Do LLMs Know about Hallucination? An Empirical Investigation of LLM's
Hidden States [19.343629282494774]
大きな言語モデル(LLM)は、現実ではない答えを補うことができ、幻覚として知られている。
本研究の目的は, LLM が幻覚をどの程度認識しているか, どのように, どの程度の程度で確認することである。
論文 参考訳(メタデータ) (2024-02-15T06:14:55Z) - The Dawn After the Dark: An Empirical Study on Factuality Hallucination
in Large Language Models [134.6697160940223]
幻覚は、大きな言語モデルの信頼できるデプロイには大きな課題となります。
幻覚(検出)の検出方法、LLMが幻覚(ソース)をなぜ検出するのか、そしてそれを緩和するために何ができるか、という3つの重要な疑問がよく研究されるべきである。
本研究は, 幻覚検出, 発生源, 緩和の3つの側面に着目した, LLM幻覚の系統的研究である。
論文 参考訳(メタデータ) (2024-01-06T12:40:45Z) - A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions [40.79317187623401]
大規模言語モデル(LLM)の出現は、自然言語処理(NLP)において大きなブレークスルーとなった。
LLMは幻覚を起こす傾向があり、可視だが非現実的な内容を生成する。
この現象は、実世界の情報検索システムにおけるLCMの信頼性に対する重大な懸念を引き起こす。
論文 参考訳(メタデータ) (2023-11-09T09:25:37Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z) - Evaluation and Analysis of Hallucination in Large Vision-Language Models [49.19829480199372]
LVLM(Large Vision-Language Models)は近年大きな成功を収めている。
LVLMは今でも幻覚に悩まされている。
幻覚とは、視覚入力に存在しないLVLMの応答の情報を指す。
論文 参考訳(メタデータ) (2023-08-29T08:51:24Z) - Halo: Estimation and Reduction of Hallucinations in Open-Source Weak
Large Language Models [11.497989461290793]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらした
パラメータが少ないオープンソースのLCMは、より大きなものに比べて深刻な幻覚に悩まされることが多い。
本稿では,より弱いオープンソース LLM の代表であるBLOOM 7B における幻覚の計測と低減に焦点をあてる。
論文 参考訳(メタデータ) (2023-08-22T20:12:49Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
本研究は,大規模視覚言語モデル(LVLM)の物体幻覚に関する最初の体系的研究である。
LVLMは、記述中の対象画像と矛盾しないオブジェクトを生成する傾向がある。
対象の幻覚を評価するために,POPEと呼ばれるポーリングに基づくクエリ手法を提案する。
論文 参考訳(メタデータ) (2023-05-17T16:34:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。