論文の概要: Multiscale Sliced Wasserstein Distances as Perceptual Color Difference Measures
- arxiv url: http://arxiv.org/abs/2407.10181v1
- Date: Sun, 14 Jul 2024 12:48:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:09:07.159300
- Title: Multiscale Sliced Wasserstein Distances as Perceptual Color Difference Measures
- Title(参考訳): 知覚色差尺度としてのマルチスケールスライスワッサースタイン距離
- Authors: Jiaqi He, Zhihua Wang, Leon Wang, Tsein-I Liu, Yuming Fang, Qilin Sun, Kede Ma,
- Abstract要約: マルチスケールスライスされたワッサースタイン距離に基づく知覚CD測度について述べる。
実験結果から,写真画像のCD評価においてCD測定が好適であることが示唆された。
数学的な意味では測度として機能し、画像やビデオのカラー転送タスクの損失関数としてその可能性を示す。
- 参考スコア(独自算出の注目度): 34.8728594246521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contemporary color difference (CD) measures for photographic images typically operate by comparing co-located pixels, patches in a ``perceptually uniform'' color space, or features in a learned latent space. Consequently, these measures inadequately capture the human color perception of misaligned image pairs, which are prevalent in digital photography (e.g., the same scene captured by different smartphones). In this paper, we describe a perceptual CD measure based on the multiscale sliced Wasserstein distance, which facilitates efficient comparisons between non-local patches of similar color and structure. This aligns with the modern understanding of color perception, where color and structure are inextricably interdependent as a unitary process of perceptual organization. Meanwhile, our method is easy to implement and training-free. Experimental results indicate that our CD measure performs favorably in assessing CDs in photographic images, and consistently surpasses competing models in the presence of image misalignment. Additionally, we empirically verify that our measure functions as a metric in the mathematical sense, and show its promise as a loss function for image and video color transfer tasks. The code is available at https://github.com/real-hjq/MS-SWD.
- Abstract(参考訳): 写真画像のコンテンポラリーカラー差(CD)測定は、通常、同じ位置のピクセルや「知覚的に均一」な色空間のパッチ、学習された潜在空間の特徴を比較することによって行われる。
その結果、デジタル写真(例えば、異なるスマートフォンで撮影されるのと同じシーン)において、不整合画像対の人間の色知覚が不十分であることがわかった。
本稿では,多スケールスライスされたワッサースタイン距離に基づく知覚CD測度について述べる。
これは、色知覚の現代的な理解と一致し、色と構造は、知覚的組織の一元的プロセスとして本質的に相互依存している。
一方,本手法は実装が容易で,トレーニングも不要である。
実験結果から, 画像中のCD評価においてCD測定が良好に行われ, 画像誤認識の有無で競合モデルを上回っていることが明らかとなった。
さらに,我々の測度が数学的な意味でメートル法として機能することを実証的に検証し,画像やビデオのカラー転送タスクの損失関数としてその可能性を示す。
コードはhttps://github.com/real-hjq/MS-SWD.comで公開されている。
関連論文リスト
- Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) は、事前訓練された安定拡散(SD)モデルを利用する多モードカラー化手法である。
ユーザのストロークをエンコードして、局所的な色操作を正確に行うための効果的な方法を提案する。
また、カラーオーバーフローと不正確な色付けの長年の問題に対処するために、自己注意に基づく新しいモジュールとコンテンツ誘導型変形可能なオートエンコーダを導入する。
論文 参考訳(メタデータ) (2024-02-16T17:51:13Z) - SPDGAN: A Generative Adversarial Network based on SPD Manifold Learning
for Automatic Image Colorization [1.220743263007369]
生成逆ネットワーク(SPDGAN)を用いたSymmetric Positive Definite (SPD) Manifold Learningに基づく完全自動カラー化手法を提案する。
本モデルは,2つの識別器とジェネレータの対角ゲームを確立する。その目標は,残差接続により層間の色情報を失うことなく,偽のカラー化画像を生成することである。
論文 参考訳(メタデータ) (2023-12-21T00:52:01Z) - Learning a Deep Color Difference Metric for Photographic Images [36.66506502182684]
我々は、4つの望ましい特性を持つ写真画像の深度CDメトリクスを学習する。
写真画像間の正確なCDを計算し、主に色相が異なる。
特徴変換のためのマルチスケール自己回帰正規化フローを学習することで,これらの特性を一度に満たせることを示す。
論文 参考訳(メタデータ) (2023-03-27T07:54:09Z) - Name Your Colour For the Task: Artificially Discover Colour Naming via
Colour Quantisation Transformer [62.75343115345667]
そこで本研究では,色空間を定量化しつつ,画像上での認識を維持しつつ,色空間を定量化する新しい色量子化変換器CQFormerを提案する。
人工色システムと人間の言語における基本色用語との一貫性のある進化パターンを観察する。
我々のカラー量子化法は、画像記憶を効果的に圧縮する効率的な量子化法も提供する。
論文 参考訳(メタデータ) (2022-12-07T03:39:18Z) - Deep Metric Color Embeddings for Splicing Localization in Severely
Degraded Images [10.091921099426294]
本研究では,画像に最適なスプライシング検出法を提案する。
我々は、照明色やカメラの白点推定に敏感な深度距離空間を学習するが、一方、対象色の変化には敏感である。
本評価では,強い圧縮とダウンサンプリングの対象となる画像に対して,提案手法の組込み空間が技量を上回り,その性能が向上することを示す。
論文 参考訳(メタデータ) (2022-06-21T21:28:40Z) - Measuring Perceptual Color Differences of Smartphone Photographs [55.9434603885868]
知覚CD評価のための最大の画像データセットをまとめた。
我々は、軽量ニューラルネットワークに基づいて、エンドツーエンドで学習可能なCD公式を構築するための最初の試みの1つである。
論文 参考訳(メタデータ) (2022-05-26T16:57:04Z) - Detecting Recolored Image by Spatial Correlation [60.08643417333974]
画像のリカラー化は、画像の色値を操作して新しいスタイルを与える、新たな編集技術である。
本稿では,空間相関の観点から,従来型と深層学習による再色検出の汎用的検出能力を示す解を探索する。
提案手法は,複数のベンチマークデータセット上での最先端検出精度を実現し,未知の種類の再色法を適切に一般化する。
論文 参考訳(メタデータ) (2022-04-23T01:54:06Z) - Colour alignment for relative colour constancy via non-standard
references [11.92389176996629]
相対色濃度は、多くの科学的イメージング応用に必須の要件である。
カメラ画像形成をブラックボックスとみなすカラーアライメントモデルを提案する。
カラーアライメントは、カメラ応答校正、応答線形化、色マッチングという3段階のプロセスとして定式化される。
論文 参考訳(メタデータ) (2021-12-30T15:58:55Z) - Learning to Structure an Image with Few Colors [59.34619548026885]
そこで,カラー量子化ネットワークであるColorCNNを提案する。
1ビットのカラースペース(すなわち2色)だけで、提案されたネットワークはCIFAR10データセット上で82.1%のトップ-1の精度を達成した。
アプリケーションの場合、PNGでエンコードされた場合、提案したカラー量子化は、極低ビットレート方式の他の画像圧縮方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-17T17:56:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。