PAFUSE: Part-based Diffusion for 3D Whole-Body Pose Estimation
- URL: http://arxiv.org/abs/2407.10220v1
- Date: Sun, 14 Jul 2024 14:24:05 GMT
- Title: PAFUSE: Part-based Diffusion for 3D Whole-Body Pose Estimation
- Authors: Nermin Samet, Cédric Rommel, David Picard, Eduardo Valle,
- Abstract summary: We introduce a novel approach for 3D whole-body pose estimation, addressing the challenge of scale- and deformability- variance across body parts.
In addition to addressing the challenge of exploiting motion in unevenly sampled data, we combine stable diffusion to hierarchical part representation.
On the H3WB dataset, our method greatly outperforms the current state of the art, which fails to exploit the temporal information.
- Score: 20.38424513438315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel approach for 3D whole-body pose estimation, addressing the challenge of scale- and deformability- variance across body parts brought by the challenge of extending the 17 major joints on the human body to fine-grained keypoints on the face and hands. In addition to addressing the challenge of exploiting motion in unevenly sampled data, we combine stable diffusion to a hierarchical part representation which predicts the relative locations of fine-grained keypoints within each part (e.g., face) with respect to the part's local reference frame. On the H3WB dataset, our method greatly outperforms the current state of the art, which fails to exploit the temporal information. We also show considerable improvements compared to other spatiotemporal 3D human-pose estimation approaches that fail to account for the body part specificities. Code is available at https://github.com/valeoai/PAFUSE.
Related papers
- Enhancing 3D Human Pose Estimation Amidst Severe Occlusion with Dual Transformer Fusion [13.938406073551844]
This paper introduces a Dual Transformer Fusion (DTF) algorithm, a novel approach to obtain a holistic 3D pose estimation.
To enable precise 3D Human Pose Estimation, our approach leverages the innovative DTF architecture, which first generates a pair of intermediate views.
Our approach outperforms existing state-of-the-art methods on both datasets, yielding substantial improvements.
arXiv Detail & Related papers (2024-10-06T18:15:27Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - HandDiff: 3D Hand Pose Estimation with Diffusion on Image-Point Cloud [60.47544798202017]
Hand pose estimation is a critical task in various human-computer interaction applications.
This paper proposes HandDiff, a diffusion-based hand pose estimation model that iteratively denoises accurate hand pose conditioned on hand-shaped image-point clouds.
Experimental results demonstrate that the proposed HandDiff significantly outperforms the existing approaches on four challenging hand pose benchmark datasets.
arXiv Detail & Related papers (2024-04-04T02:15:16Z) - Probabilistic Human Mesh Recovery in 3D Scenes from Egocentric Views [32.940614931864154]
We propose a scene-conditioned diffusion method to model the body pose distribution.
The method generates bodies in plausible human-scene interactions.
It achieves superior accuracy for visible joints and diversity for invisible body parts.
arXiv Detail & Related papers (2023-04-12T17:58:57Z) - KTN: Knowledge Transfer Network for Learning Multi-person 2D-3D
Correspondences [77.56222946832237]
We present a novel framework to detect the densepose of multiple people in an image.
The proposed method, which we refer to Knowledge Transfer Network (KTN), tackles two main problems.
It simultaneously maintains feature resolution and suppresses background pixels, and this strategy results in substantial increase in accuracy.
arXiv Detail & Related papers (2022-06-21T03:11:37Z) - KAMA: 3D Keypoint Aware Body Mesh Articulation [79.04090630502782]
We propose an analytical solution to articulate a parametric body model, SMPL, via a set of straightforward geometric transformations.
Our approach offers significantly better alignment to image content when compared to state-of-the-art approaches.
Results on the challenging 3DPW and Human3.6M demonstrate that our approach yields state-of-the-art body mesh fittings.
arXiv Detail & Related papers (2021-04-27T23:01:03Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z) - Learning 3D Human Shape and Pose from Dense Body Parts [117.46290013548533]
We propose a Decompose-and-aggregate Network (DaNet) to learn 3D human shape and pose from dense correspondences of body parts.
Messages from local streams are aggregated to enhance the robust prediction of the rotation-based poses.
Our method is validated on both indoor and real-world datasets including Human3.6M, UP3D, COCO, and 3DPW.
arXiv Detail & Related papers (2019-12-31T15:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.