論文の概要: Addressing Domain Discrepancy: A Dual-branch Collaborative Model to Unsupervised Dehazing
- arxiv url: http://arxiv.org/abs/2407.10226v1
- Date: Sun, 14 Jul 2024 14:47:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 18:59:20.325297
- Title: Addressing Domain Discrepancy: A Dual-branch Collaborative Model to Unsupervised Dehazing
- Title(参考訳): ドメインの相違に対処する: 教師なしのデハージングのための二重ブランチ協調モデル
- Authors: Shuaibin Fan, Minglong Xue, Aoxiang Ning, Senming Zhong,
- Abstract要約: 本稿では、この問題に対処する新しい二分岐協調脱ハージングモデル(DCM-dehaze)を提案する。
具体的には,DDSCM (Double Deepwise Separable Convolutional Module) を設計し,より深い特徴の情報を強化する。
さらに、画像のエッジ特徴を最適化し、画像の明瞭度と忠実度を高めるために、双方向の輪郭関数を構築した。
- 参考スコア(独自算出の注目度): 1.6624384368855527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although synthetic data can alleviate acquisition challenges in image dehazing tasks, it also introduces the problem of domain bias when dealing with small-scale data. This paper proposes a novel dual-branch collaborative unpaired dehazing model (DCM-dehaze) to address this issue. The proposed method consists of two collaborative branches: dehazing and contour constraints. Specifically, we design a dual depthwise separable convolutional module (DDSCM) to enhance the information expressiveness of deeper features and the correlation to shallow features. In addition, we construct a bidirectional contour function to optimize the edge features of the image to enhance the clarity and fidelity of the image details. Furthermore, we present feature enhancers via a residual dense architecture to eliminate redundant features of the dehazing process and further alleviate the domain deviation problem. Extensive experiments on benchmark datasets show that our method reaches the state-of-the-art. This project code will be available at \url{https://github.com/Fan-pixel/DCM-dehaze.
- Abstract(参考訳): 合成データは、画像デハージングタスクにおける取得課題を軽減することができるが、小規模データを扱う際のドメインバイアスの問題も導入する。
本稿では、この問題に対処する新しい二分岐協調脱ハージングモデル(DCM-dehaze)を提案する。
提案手法は,デハジングと輪郭制約という2つの協調枝から構成される。
具体的には,深部特徴の情報表現性と浅部特徴との相関性を高めるために,DDSCM (Dual Deepwise Separable Convolutional Module) を設計する。
さらに、画像のエッジ特徴を最適化し、画像の明瞭度と忠実度を高めるために、双方向の輪郭関数を構築した。
さらに、デハージングプロセスの冗長な特徴を排除し、ドメインの偏りを緩和するために、高密度なアーキテクチャを介して特徴増強器を提案する。
ベンチマークデータセットの大規模な実験は、我々の手法が最先端に到達していることを示している。
このプロジェクトのコードは \url{https://github.com/Fan-pixel/DCM-dehaze.com で公開される。
関連論文リスト
- Boundary Attention Constrained Zero-Shot Layout-To-Image Generation [47.435234391588494]
近年のテキスト・画像拡散モデルでは,テキストからの高解像度画像の生成に優れるが,空間構成や物体数に対する精密な制御に苦慮している。
本稿では,新たなゼロショットL2IアプローチであるBACONを提案する。
自己アテンション特徴写像の画素間相関を利用して、交差アテンション写像を整列し、境界注意で制約された3つの損失関数を組み合わせ、潜時特徴を更新する。
論文 参考訳(メタデータ) (2024-11-15T05:44:45Z) - Self-supervised Monocular Depth Estimation with Large Kernel Attention [30.44895226042849]
より詳細な情報を得るために,自己教師付き単眼深度推定ネットワークを提案する。
具体的には,長距離依存性をモデル化可能なカーネルアテンションに基づくデコーダを提案する。
提案手法は,KITTIデータセット上での競合結果を実現する。
論文 参考訳(メタデータ) (2024-09-26T14:44:41Z) - Embracing Events and Frames with Hierarchical Feature Refinement Network for Object Detection [17.406051477690134]
イベントカメラはスパースと非同期のイベントを出力し、これらの問題を解決する潜在的な解決策を提供する。
イベントフレーム融合のための新しい階層的特徴改善ネットワークを提案する。
本手法は, フレーム画像に15種類の汚損タイプを導入する際に, 極めて優れたロバスト性を示す。
論文 参考訳(メタデータ) (2024-07-17T14:09:46Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
画像デハージングのための相互情報駆動型トリプルインタラクションネットワーク(MITNet)を提案する。
振幅誘導ヘイズ除去と呼ばれる第1段階は、ヘイズ除去のためのヘイズ画像の振幅スペクトルを復元することを目的としている。
第2段階は位相誘導構造が洗練され、位相スペクトルの変換と微細化を学ぶことに尽力した。
論文 参考訳(メタデータ) (2023-08-14T08:23:58Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
2つの大きなスタブリングブロックは、画素の不一致や非効率な推論など、開発を妨げる。
本研究では,高機能なマルチ露光画像融合のための自己アライメントとディテールリプレクションモジュールを取り入れたアーキテクチャ検索に基づくパラダイムを提案する。
提案手法は様々な競争方式より優れており、一般的なシナリオではPSNRが3.19%向上し、不整合シナリオでは23.5%向上した。
論文 参考訳(メタデータ) (2023-05-20T17:01:52Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
誘導DSRのための新しい注意に基づく階層型マルチモーダル融合ネットワークを提案する。
本手法は,再現精度,動作速度,メモリ効率の点で最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:28:33Z) - Multi-Stage Progressive Image Restoration [167.6852235432918]
本稿では、これらの競合する目標を最適にバランスできる新しい相乗的設計を提案する。
本提案では, 劣化した入力の復元関数を段階的に学習する多段階アーキテクチャを提案する。
MPRNetという名前の密接な相互接続型マルチステージアーキテクチャは、10のデータセットに対して強力なパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2021-02-04T18:57:07Z) - Multi-Scale Boosted Dehazing Network with Dense Feature Fusion [92.92572594942071]
U-Netアーキテクチャに基づくDense Feature Fusionを用いたマルチスケールブーストデハージングネットワークを提案する。
提案モデルでは,ベンチマークデータセットや実世界のハジー画像に対する最先端のアプローチに対して,好意的に機能することを示す。
論文 参考訳(メタデータ) (2020-04-28T09:34:47Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
本稿では,基本特徴と回復特徴を別々に抽出する二分岐畳み込みニューラルネットワークを提案する。
特徴抽出ステップを2つのタスク非依存ストリームに分解することで、デュアルブランチモデルがトレーニングプロセスを容易にすることができる。
論文 参考訳(メタデータ) (2020-03-02T13:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。