KAT: Dependency-aware Automated API Testing with Large Language Models
- URL: http://arxiv.org/abs/2407.10227v1
- Date: Sun, 14 Jul 2024 14:48:18 GMT
- Title: KAT: Dependency-aware Automated API Testing with Large Language Models
- Authors: Tri Le, Thien Tran, Duy Cao, Vy Le, Tien Nguyen, Vu Nguyen,
- Abstract summary: KAT (Katalon API Testing) is a novel AI-driven approach that autonomously generates test cases to validate APIs.
Our evaluation of KAT using 12 real-world services shows that it can improve validation coverage, detect more undocumented status codes, and reduce false positives in these services.
- Score: 1.7264233311359707
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: API testing has increasing demands for software companies. Prior API testing tools were aware of certain types of dependencies that needed to be concise between operations and parameters. However, their approaches, which are mostly done manually or using heuristic-based algorithms, have limitations due to the complexity of these dependencies. In this paper, we present KAT (Katalon API Testing), a novel AI-driven approach that leverages the large language model GPT in conjunction with advanced prompting techniques to autonomously generate test cases to validate RESTful APIs. Our comprehensive strategy encompasses various processes to construct an operation dependency graph from an OpenAPI specification and to generate test scripts, constraint validation scripts, test cases, and test data. Our evaluation of KAT using 12 real-world RESTful services shows that it can improve test coverage, detect more undocumented status codes, and reduce false positives in these services in comparison with a state-of-the-art automated test generation tool. These results indicate the effectiveness of using the large language model for generating test scripts and data for API testing.
Related papers
- Utilizing API Response for Test Refinement [2.8002188463519944]
This paper proposes a dynamic test refinement approach that leverages the response message.
Using an intelligent agent, the approach adds constraints to the API specification that are further used to generate a test scenario.
The proposed approach led to a decrease in the number of 4xx responses, taking a step closer to generating more realistic test cases.
arXiv Detail & Related papers (2025-01-30T05:26:32Z) - AutoRestTest: A Tool for Automated REST API Testing Using LLMs and MARL [46.65963514391019]
AutoRestTest is a novel tool for testing REST APIs.
It integrates the Semantic Operation Dependency Graph (SODG) with Multi-Agent Reinforcement Learning (MARL) and large language models (LLMs)
It provides continuous telemetry on successful operation count, unique server errors detected, and time elapsed.
arXiv Detail & Related papers (2025-01-15T05:54:33Z) - LlamaRestTest: Effective REST API Testing with Small Language Models [50.058600784556816]
We present LlamaRestTest, a novel approach that employs two custom LLMs to generate realistic test inputs.
LlamaRestTest surpasses state-of-the-art tools in code coverage and error detection, even with RESTGPT-enhanced specifications.
arXiv Detail & Related papers (2025-01-15T05:51:20Z) - Commit0: Library Generation from Scratch [77.38414688148006]
Commit0 is a benchmark that challenges AI agents to write libraries from scratch.
Agents are provided with a specification document outlining the library's API as well as a suite of interactive unit tests.
Commit0 also offers an interactive environment where models receive static analysis and execution feedback on the code they generate.
arXiv Detail & Related papers (2024-12-02T18:11:30Z) - A Multi-Agent Approach for REST API Testing with Semantic Graphs and LLM-Driven Inputs [46.65963514391019]
We present AutoRestTest, the first black-box tool to adopt a dependency-embedded multi-agent approach for REST API testing.
Our approach treats REST API testing as a separable problem, where four agents collaborate to optimize API exploration.
Our evaluation of AutoRestTest on 12 real-world REST services shows that it outperforms the four leading black-box REST API testing tools.
arXiv Detail & Related papers (2024-11-11T16:20:27Z) - APITestGenie: Automated API Test Generation through Generative AI [2.0716352593701277]
APITestGenie generates executable API test scripts from business requirements and API specifications.
In experiments with 10 real-world APIs, the tool generated valid test scripts 57% of the time.
Human intervention is recommended to validate or refine generated scripts before integration into CI/CD pipelines.
arXiv Detail & Related papers (2024-09-05T18:02:41Z) - DeepREST: Automated Test Case Generation for REST APIs Exploiting Deep Reinforcement Learning [5.756036843502232]
This paper introduces DeepREST, a novel black-box approach for automatically testing REST APIs.
It leverages deep reinforcement learning to uncover implicit API constraints, that is, constraints hidden from API documentation.
Our empirical validation suggests that the proposed approach is very effective in achieving high test coverage and fault detection.
arXiv Detail & Related papers (2024-08-16T08:03:55Z) - COTS: Connected OpenAPI Test Synthesis for RESTful Applications [0.0]
We introduce a (i) domain-specific language for OpenAPI specifications and (ii) a tool to support our methodology.
Our tool, dubbed COTS, generates (randomised) model-based test executions and reports software defects.
arXiv Detail & Related papers (2024-04-30T15:12:31Z) - Leveraging Large Language Models to Improve REST API Testing [51.284096009803406]
RESTGPT takes as input an API specification, extracts machine-interpretable rules, and generates example parameter values from natural-language descriptions in the specification.
Our evaluations indicate that RESTGPT outperforms existing techniques in both rule extraction and value generation.
arXiv Detail & Related papers (2023-12-01T19:53:23Z) - Adaptive REST API Testing with Reinforcement Learning [54.68542517176757]
Current testing tools lack efficient exploration mechanisms, treating all operations and parameters equally.
Current tools struggle when response schemas are absent in the specification or exhibit variants.
We present an adaptive REST API testing technique incorporates reinforcement learning to prioritize operations during exploration.
arXiv Detail & Related papers (2023-09-08T20:27:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.