論文の概要: xLSTMTime : Long-term Time Series Forecasting With xLSTM
- arxiv url: http://arxiv.org/abs/2407.10240v1
- Date: Sun, 14 Jul 2024 15:15:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 18:59:20.305226
- Title: xLSTMTime : Long-term Time Series Forecasting With xLSTM
- Title(参考訳): xLSTMTime : xLSTMによる長期時系列予測
- Authors: Musleh Alharthi, Ausif Mahmood,
- Abstract要約: 本稿では、時系列予測のための拡張LSTM (xLSTM) と呼ばれる最近のアーキテクチャの適応について述べる。
我々は、xLSTMTimeの性能を、複数の実世界のda-tasetにまたがる様々な最先端モデルと比較する。
この結果から,改良されたリカレントアーキテクチャは時系列予測において,トランスフォーマーモデルに代わる競合的な代替手段を提供する可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, transformer-based models have gained prominence in multivariate long-term time series forecasting (LTSF), demonstrating significant advancements despite facing challenges such as high computational demands, difficulty in capturing temporal dynamics, and managing long-term dependencies. The emergence of LTSF-Linear, with its straightforward linear architecture, has notably outperformed transformer-based counterparts, prompting a reevaluation of the transformer's utility in time series forecasting. In response, this paper presents an adaptation of a recent architecture termed extended LSTM (xLSTM) for LTSF. xLSTM incorporates exponential gating and a revised memory structure with higher capacity that has good potential for LTSF. Our adopted architecture for LTSF termed as xLSTMTime surpasses current approaches. We compare xLSTMTime's performance against various state-of-the-art models across multiple real-world da-tasets, demonstrating superior forecasting capabilities. Our findings suggest that refined recurrent architectures can offer competitive alternatives to transformer-based models in LTSF tasks, po-tentially redefining the landscape of time series forecasting.
- Abstract(参考訳): 近年,多変量時系列予測(LTSF)では,高い計算要求,時間的ダイナミックス獲得の難しさ,長期依存の管理といった課題に直面しつつも,大きな進歩をみせている。
LTSF-Linearの出現は、その直線的アーキテクチャによって明らかにトランスフォーマーベースのアーキテクチャよりも優れており、時系列予測におけるトランスフォーマーの有用性の再評価につながっている。
そこで本研究では,最近のアーキテクチャである拡張LSTM (xLSTM) をLTSFに適用した。
xLSTM には指数ゲーティングと、LTSF に有望な高容量のメモリ構造が組み込まれている。
LTSF に採用したアーキテクチャは xLSTMTime と呼ばれ、現在のアプローチを超越しています。
我々は、xLSTMTimeの性能を、複数の実世界のダ-タセットにわたる様々な最先端モデルと比較し、優れた予測能力を示す。
この結果から,改良されたリカレントアーキテクチャは,時系列予測のランドスケープを再定義するLTSFタスクにおいて,トランスフォーマーモデルに代わる競合的な代替手段を提供する可能性が示唆された。
関連論文リスト
- LSEAttention is All You Need for Time Series Forecasting [0.0]
トランスフォーマーベースのアーキテクチャは自然言語処理とコンピュータビジョンにおいて顕著な成功を収めた。
変圧器モデルでよく見られるエントロピー崩壊とトレーニング不安定性に対処するアプローチである textbfLSEAttention を導入する。
論文 参考訳(メタデータ) (2024-10-31T09:09:39Z) - Unlocking the Power of LSTM for Long Term Time Series Forecasting [27.245021350821638]
本稿では, sLSTM 上に実装したP-sLSTM という単純なアルゴリズムを提案する。
これらの改良により、TSFにおけるsLSTMの性能が大幅に向上し、最先端の結果が得られた。
論文 参考訳(メタデータ) (2024-08-19T13:59:26Z) - Understanding Different Design Choices in Training Large Time Series Models [71.20102277299445]
不均一な時系列データに基づく大規模時系列モデル(LTSMs)のトレーニングには,ユニークな課題が伴う。
本稿では,時系列データに合わせた新しい統計プロンプトである,時系列プロンプトを提案する。
textttLTSM-bundleを導入します。
論文 参考訳(メタデータ) (2024-06-20T07:09:19Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraosはカオス理論を長期時系列予測に取り入れている。
本研究では,AttraosがPatchTSTと比較して,パラメータの12分の1しか持たない主流データセットやカオスデータセットにおいて,LTSF法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-18T05:35:01Z) - Convolutional State Space Models for Long-Range Spatiotemporal Modeling [65.0993000439043]
ConvS5は、長距離時間モデリングのための効率的な変種である。
トランスフォーマーとConvNISTTMは、長い水平移動実験において、ConvLSTMより3倍速く、トランスフォーマーより400倍速くサンプルを生成する一方で、大幅に性能が向上した。
論文 参考訳(メタデータ) (2023-10-30T16:11:06Z) - Transformers versus LSTMs for electronic trading [0.0]
本研究では,Transformerベースのモデルが金融時系列予測に適用可能か,LSTMに勝るかを検討する。
DLSTMと呼ばれるLSTMベースの新しいモデルを構築し、Transformerベースのモデルのための新しいアーキテクチャは、財務予測に適応するように設計されている。
実験結果は,Transformerベースのモデルが絶対価格列予測において限られた優位性しか持たないことを反映している。
論文 参考訳(メタデータ) (2023-09-20T15:25:43Z) - Client: Cross-variable Linear Integrated Enhanced Transformer for
Multivariate Long-Term Time Series Forecasting [4.004869317957185]
クライアント(Client)は,従来のトランスフォーマーベースモデルと線形モデルの両方に勝る高度なモデルである。
クライアントは、従来の線形モデルとTransformerベースのモデルとを分離した、非線形性とクロス変数の依存関係を組み込んでいる。
論文 参考訳(メタデータ) (2023-05-30T08:31:22Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - CLMFormer: Mitigating Data Redundancy to Revitalize Transformer-based
Long-Term Time Series Forecasting System [46.39662315849883]
時系列予測(LTSF)は,様々な応用において重要な役割を担っている。
既存のTransformerベースのモデルであるFedformerやInformerは、いくつかのエポックの後、検証セット上で最高のパフォーマンスを達成することが多い。
本稿では,カリキュラム学習とメモリ駆動デコーダの導入により,この問題に対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-07-16T04:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。