Towards detailed and interpretable hybrid modeling of continental-scale bird migration
- URL: http://arxiv.org/abs/2407.10259v1
- Date: Sun, 14 Jul 2024 15:52:19 GMT
- Title: Towards detailed and interpretable hybrid modeling of continental-scale bird migration
- Authors: Fiona Lippert, Bart Kranstauber, Patrick Forré, E. Emiel van Loon,
- Abstract summary: We build on a recently developed hybrid model of continental-scale bird migration, which combines a movement model inspired by fluid dynamics with recurrent neural networks.
F FluxRGNN has been shown to successfully predict key migration patterns, but its spatial resolution is constrained by the typically sparse observations obtained from weather radars.
We propose two major modifications that allow for more detailed predictions on any desired tessellation while providing control over the interpretability of model components.
- Score: 9.887133861477231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid modeling aims to augment traditional theory-driven models with machine learning components that learn unknown parameters, sub-models or correction terms from data. In this work, we build on FluxRGNN, a recently developed hybrid model of continental-scale bird migration, which combines a movement model inspired by fluid dynamics with recurrent neural networks that capture the complex decision-making processes of birds. While FluxRGNN has been shown to successfully predict key migration patterns, its spatial resolution is constrained by the typically sparse observations obtained from weather radars. Additionally, its trainable components lack explicit incentives to adequately predict take-off and landing events. Both aspects limit our ability to interpret model results ecologically. To address this, we propose two major modifications that allow for more detailed predictions on any desired tessellation while providing control over the interpretability of model components. In experiments on the U.S. weather radar network, the enhanced model effectively leverages the underlying movement model, resulting in strong extrapolation capabilities to unobserved locations.
Related papers
- Robust Traffic Forecasting against Spatial Shift over Years [11.208740750755025]
We investigate state-temporal-the-art models using newly proposed traffic OOD benchmarks.
We find that these models experience significant decline in performance.
We propose a novel of Mixture Experts framework, which learns a set of graph generators during training and combines them to generate new graphs.
Our method is both parsimonious and efficacious, and can be seamlessly integrated into anytemporal model.
arXiv Detail & Related papers (2024-10-01T03:49:29Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Interpretable Water Level Forecaster with Spatiotemporal Causal
Attention Mechanisms [0.0]
This work proposes a neuraltemporal model with a transformer exploiting a causal relationship based on prior knowledge.
We use the Han River dataset from 2016 to compare 2021, and confirm that our model provides an interpretable and consistent model with prior knowledge.
arXiv Detail & Related papers (2023-02-28T04:37:26Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model.
We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator.
arXiv Detail & Related papers (2022-05-27T07:39:28Z) - Harnessing expressive capacity of Machine Learning modeling to represent
complex coupling of Earth's auroral space weather regimes [0.0]
We develop multiple Deep Learning (DL) models that advance predictions of the global auroral particle precipitation.
We use observations from low Earth orbiting spacecraft of electron energy flux to develop a model that improves global nowcasts.
Notably, the ML models improve prediction of the extreme events, historically to accurate specification and indicate that increased capacity provided by ML innovation can address grand challenges in science of space weather.
arXiv Detail & Related papers (2021-11-29T22:35:09Z) - Deep learning for improved global precipitation in numerical weather
prediction systems [1.721029532201972]
We use the UNET architecture of a deep convolutional neural network with residual learning as a proof of concept to learn global data-driven models of precipitation.
The results are compared with the operational dynamical model used by the India Meteorological Department.
This study is a proof-of-concept showing that residual learning-based UNET can unravel physical relationships to target precipitation.
arXiv Detail & Related papers (2021-06-20T05:10:42Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.