Robust Traffic Forecasting against Spatial Shift over Years
- URL: http://arxiv.org/abs/2410.00373v1
- Date: Tue, 1 Oct 2024 03:49:29 GMT
- Title: Robust Traffic Forecasting against Spatial Shift over Years
- Authors: Hongjun Wang, Jiyuan Chen, Tong Pan, Zheng Dong, Lingyu Zhang, Renhe Jiang, Xuan Song,
- Abstract summary: We investigate state-temporal-the-art models using newly proposed traffic OOD benchmarks.
We find that these models experience significant decline in performance.
We propose a novel of Mixture Experts framework, which learns a set of graph generators during training and combines them to generate new graphs.
Our method is both parsimonious and efficacious, and can be seamlessly integrated into anytemporal model.
- Score: 11.208740750755025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Spatiotemporal Graph Neural Networks (ST-GNNs) and Transformers have demonstrated promising potential for traffic forecasting by effectively capturing both temporal and spatial correlations. The generalization ability of spatiotemporal models has received considerable attention in recent scholarly discourse. However, no substantive datasets specifically addressing traffic out-of-distribution (OOD) scenarios have been proposed. Existing ST-OOD methods are either constrained to testing on extant data or necessitate manual modifications to the dataset. Consequently, the generalization capacity of current spatiotemporal models in OOD scenarios remains largely underexplored. In this paper, we investigate state-of-the-art models using newly proposed traffic OOD benchmarks and, surprisingly, find that these models experience a significant decline in performance. Through meticulous analysis, we attribute this decline to the models' inability to adapt to previously unobserved spatial relationships. To address this challenge, we propose a novel Mixture of Experts (MoE) framework, which learns a set of graph generators (i.e., graphons) during training and adaptively combines them to generate new graphs based on novel environmental conditions to handle spatial distribution shifts during testing. We further extend this concept to the Transformer architecture, achieving substantial improvements. Our method is both parsimonious and efficacious, and can be seamlessly integrated into any spatiotemporal model, outperforming current state-of-the-art approaches in addressing spatial dynamics.
Related papers
- Unveiling the Inflexibility of Adaptive Embedding in Traffic Forecasting [9.818230821091184]
Rapid urbanization has led to dynamic shifts in traffic patterns and travel demand, posing major challenges for accurate long-term traffic prediction.
We evaluate state-of-the-art models on an extended traffic benchmark and observe substantial performance degradation in existing ST-GNNs.
We propose a Principal Component Analysis (PCA) embedding approach that enables models to adapt to new scenarios without retraining.
arXiv Detail & Related papers (2024-11-18T10:30:34Z) - TEAM: Topological Evolution-aware Framework for Traffic Forecasting--Extended Version [24.544665297938437]
Topological Evolution-aware Framework (TEAM) for traffic forecasting incorporates convolution and attention.
TEAM is capable of much lower re-training costs than existing methods are without jeopardizing forecasting accuracy.
arXiv Detail & Related papers (2024-10-24T22:50:21Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for
Traffic Forecasting [10.392021668859272]
This paper proposes Conjoint Spatio-Temporal graph neural network (abbreviated as COOL), which models heterogeneous graphs from prior and posterior information to conjointly capture high-order-temporal relationships.
To capture diverse transitional properties to enhance traffic forecasting, we propose a conjoint-attention decoder that models diverse temporal patterns from both multi-rank and multi-scale views.
arXiv Detail & Related papers (2024-03-02T04:30:09Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
We propose TrendGCN to address the challenge of balancing dynamics and robustness.
Our model simultaneously incorporates spatial (node-wise) embeddings and temporal (time-wise) embeddings to account for heterogeneous space-and-time convolutions.
Compared with traditional approaches that handle step-wise predictive errors independently, our approach can produce more realistic and robust forecasts.
arXiv Detail & Related papers (2022-08-05T09:36:55Z) - Temporal Domain Generalization with Drift-Aware Dynamic Neural Network [12.483886657900525]
We propose a Temporal Domain Generalization with Drift-Aware Dynamic Neural Network (DRAIN) framework.
Specifically, we formulate the problem into a Bayesian framework that jointly models the relation between data and model dynamics.
It captures the temporal drift of model parameters and data distributions and can predict models in the future without the presence of future data.
arXiv Detail & Related papers (2022-05-21T20:01:31Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.