Affordance-Guided Reinforcement Learning via Visual Prompting
- URL: http://arxiv.org/abs/2407.10341v3
- Date: Wed, 2 Oct 2024 00:40:38 GMT
- Title: Affordance-Guided Reinforcement Learning via Visual Prompting
- Authors: Olivia Y. Lee, Annie Xie, Kuan Fang, Karl Pertsch, Chelsea Finn,
- Abstract summary: Keypoint-based Affordance Guidance for Improvements (KAGI) is a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL.
On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 20K online fine-tuning steps.
- Score: 51.361977466993345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robots equipped with reinforcement learning (RL) have the potential to learn a wide range of skills solely from a reward signal. However, obtaining a robust and dense reward signal for general manipulation tasks remains a challenge. Existing learning-based approaches require significant data, such as human demonstrations of success and failure, to learn task-specific reward functions. Recently, there is also a growing adoption of large multi-modal foundation models for robotics that can perform visual reasoning in physical contexts and generate coarse robot motions for manipulation tasks. Motivated by this range of capability, in this work, we present Keypoint-based Affordance Guidance for Improvements (KAGI), a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL. State-of-the-art VLMs have demonstrated impressive reasoning about affordances through keypoints in zero-shot, and we use these to define dense rewards that guide autonomous robotic learning. On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 20K online fine-tuning steps. Additionally, we demonstrate the robustness of KAGI to reductions in the number of in-domain demonstrations used for pre-training, reaching similar performance in 35K online fine-tuning steps. Project website: https://sites.google.com/view/affordance-guided-rl
Related papers
- Robotic Control via Embodied Chain-of-Thought Reasoning [86.6680905262442]
Key limitation of learned robot control policies is their inability to generalize outside their training data.
Recent works on vision-language-action models (VLAs) have shown that the use of large, internet pre-trained vision-language models can substantially improve their robustness and generalization ability.
We introduce Embodied Chain-of-Thought Reasoning (ECoT) for VLAs, in which we train VLAs to perform multiple steps of reasoning about plans, sub-tasks, motions, and visually grounded features before predicting the robot action.
arXiv Detail & Related papers (2024-07-11T17:31:01Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - Accelerating Reinforcement Learning of Robotic Manipulations via
Feedback from Large Language Models [21.052532074815765]
We introduce the Lafite-RL (Language agent feedback interactive Reinforcement Learning) framework.
It enables RL agents to learn robotic tasks efficiently by taking advantage of Large Language Models' timely feedback.
It outperforms the baseline in terms of both learning efficiency and success rate.
arXiv Detail & Related papers (2023-11-04T11:21:38Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Reinforcement Learning with Foundation Priors: Let the Embodied Agent Efficiently Learn on Its Own [59.11934130045106]
We propose Reinforcement Learning with Foundation Priors (RLFP) to utilize guidance and feedback from policy, value, and success-reward foundation models.
Within this framework, we introduce the Foundation-guided Actor-Critic (FAC) algorithm, which enables embodied agents to explore more efficiently with automatic reward functions.
Our method achieves remarkable performances in various manipulation tasks on both real robots and in simulation.
arXiv Detail & Related papers (2023-10-04T07:56:42Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.