論文の概要: Improving Hyperbolic Representations via Gromov-Wasserstein Regularization
- arxiv url: http://arxiv.org/abs/2407.10495v1
- Date: Mon, 15 Jul 2024 07:37:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 16:00:42.043279
- Title: Improving Hyperbolic Representations via Gromov-Wasserstein Regularization
- Title(参考訳): Gromov-Wasserstein正則化による双曲表現の改善
- Authors: Yifei Yang, Wonjun Lee, Dongmian Zou, Gilad Lerman,
- Abstract要約: 双曲型ニューラルネットワークにおける新しい正規化機構として,Gromov-Wasserstein (GW) 距離を適用した。
具体的には、双曲型ニューラルネットワークの層を輸送マップとして扱い、GW距離を計算する。
我々は、トレーニングセットに基づいて計算されたGW距離が、基礎となるデータ分布のGW距離をよく近似していることを検証する。
- 参考スコア(独自算出の注目度): 19.933488017214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperbolic representations have shown remarkable efficacy in modeling inherent hierarchies and complexities within data structures. Hyperbolic neural networks have been commonly applied for learning such representations from data, but they often fall short in preserving the geometric structures of the original feature spaces. In response to this challenge, our work applies the Gromov-Wasserstein (GW) distance as a novel regularization mechanism within hyperbolic neural networks. The GW distance quantifies how well the original data structure is maintained after embedding the data in a hyperbolic space. Specifically, we explicitly treat the layers of the hyperbolic neural networks as a transport map and calculate the GW distance accordingly. We validate that the GW distance computed based on a training set well approximates the GW distance of the underlying data distribution. Our approach demonstrates consistent enhancements over current state-of-the-art methods across various tasks, including few-shot image classification, as well as semi-supervised graph link prediction and node classification.
- Abstract(参考訳): 双曲表現は、データ構造内の固有の階層や複雑さをモデル化する上で、顕著な効果を示している。
双曲型ニューラルネットワークは、データからそのような表現を学習するためによく用いられるが、元の特徴空間の幾何学的構造を保存するには不十分であることが多い。
この課題に対して、我々はGromov-Wasserstein (GW) 距離を双曲型ニューラルネットワークにおける新しい正規化機構として適用した。
GW距離は、双曲空間にデータを埋め込んだ後、元のデータ構造がどれだけうまく維持されているかを定量化する。
具体的には、双曲型ニューラルネットワークの層を輸送マップとして明示的に扱い、それに応じてGW距離を計算する。
我々は、トレーニングセットに基づいて計算されたGW距離が、基礎となるデータ分布のGW距離をよく近似していることを検証する。
提案手法は, 画像分類や半教師付きグラフリンク予測, ノード分類など, 様々なタスクにまたがる最先端の手法に対する一貫した拡張を示す。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
ノード分類のためのグラフエコー状態ネットワーク(GESN)を用いた異種グラフの課題に対処する。
GESNはグラフのための貯水池計算モデルであり、ノードの埋め込みは訓練されていないメッセージパッシング関数によって計算される。
実験の結果, 貯水池モデルでは, ほぼ完全に訓練された深層モデルに対して, より優れた精度あるいは同等の精度が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-14T19:42:31Z) - HGWaveNet: A Hyperbolic Graph Neural Network for Temporal Link
Prediction [9.110162634132827]
本稿では,時間的リンク予測のために,双曲空間とデータ分布間の適合性をフル活用した新しい双曲グラフニューラルネットワークHGWaveNetを提案する。
具体的には,空間的位相構造と時間的進化情報を別々に学習するための2つの重要なモジュールを設計する。
その結果,SOTA法による時間リンク予測では,AUCが6.67%向上した。
論文 参考訳(メタデータ) (2023-04-14T07:07:00Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Text Enriched Sparse Hyperbolic Graph Convolutional Networks [21.83127488157701]
グラフニューラルネットワーク(GNN)とその双曲型は、そのようなネットワークを低次元の潜在空間でエンコードするための有望なアプローチを提供する。
本稿では,グラフのメタパス構造を意味信号を用いて捉えるために,テキスト強化スパースハイパーボリックグラフ畳み込みネットワーク(TESH-GCN)を提案する。
我々のモデルは,リンク予測のタスクにおいて,最先端のアプローチよりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2022-07-06T00:23:35Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
交通予測のための新しいネットワークである空間時間適応グラフ畳み込み(STAAN)を提案する。
まず,GCN処理中に事前に定義された行列を使わずに適応的依存行列を採用し,ノード間の依存性を推定する。
第2に,グローバルな依存のために設計されたグラフアテンションネットワークに基づくPWアテンションと,空間ブロックとしてのGCNを統合した。
論文 参考訳(メタデータ) (2022-06-07T09:08:35Z) - Learning Smooth Neural Functions via Lipschitz Regularization [92.42667575719048]
ニューラルフィールドにおけるスムーズな潜伏空間を促進するために設計された新しい正規化を導入する。
従来のリプシッツ正規化ネットワークと比較して、我々のアルゴリズムは高速で、4行のコードで実装できる。
論文 参考訳(メタデータ) (2022-02-16T21:24:54Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Isometric Graph Neural Networks [5.306334746787569]
我々はIsometric Graph Neural Networks (IGNN) の学習手法を提案する。
IGNNは、任意のGNNアルゴリズムがノード間の距離を反映した表現を生成するために、入力表現空間と損失関数を変更する必要がある。
我々はケンドールのタウ(KT)の400%まで、一貫した実質的な改善を観察する。
論文 参考訳(メタデータ) (2020-06-16T22:51:13Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。