論文の概要: AirDnD -- Asynchronous In-Range Dynamic and Distributed Network Orchestration Framework
- arxiv url: http://arxiv.org/abs/2407.10500v1
- Date: Mon, 15 Jul 2024 07:43:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-16 16:00:42.037633
- Title: AirDnD -- Asynchronous In-Range Dynamic and Distributed Network Orchestration Framework
- Title(参考訳): AirDnD - Asynchronous In-Range Dynamic and Distributed Network Orchestration Framework
- Authors: Malsha Ashani Mahawatta Dona, Christian Berger, Yinan Yu,
- Abstract要約: 本研究の目的は、動的メッシュネットワークを形成することにより、分散エッジデバイスにおけるコンピューティングリソースの利用を改善することである。
提案手法は, 地理的に分散したエッジデバイスを生物に変換する3つのモデルから構成される。
- 参考スコア(独自算出の注目度): 1.8590097948961688
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The increasing usage of IoT devices has generated an extensive volume of data which resulted in the establishment of data centers with well-structured computing infrastructure. Reducing underutilized resources of such data centers can be achieved by monitoring the tasks and offloading them across various compute units. This approach can also be used in mini mobile data ponds generated by edge devices and smart vehicles. This research aims to improve and utilize the usage of computing resources in distributed edge devices by forming a dynamic mesh network. The nodes in the mesh network shall share their computing tasks with another node that possesses unused computing resources. This proposed method ensures the minimization of data transfer between entities. The proposed AirDnD vision will be applied to a practical scenario relevant to an autonomous vehicle that approaches an intersection commonly known as ``looking around the corner'' in related literature, collecting essential computational results from nearby vehicles to enhance its perception. The proposed solution consists of three models that transform growing amounts of geographically distributed edge devices into a living organism.
- Abstract(参考訳): IoTデバイスの利用が増加し、大量のデータが生成され、構造化されたコンピューティングインフラストラクチャを備えたデータセンタが確立された。
このようなデータセンターの未使用リソースの削減は、タスクを監視し、様々な計算ユニットにまたがってそれらをオフロードすることで達成できる。
このアプローチは、エッジデバイスやスマート車によって生成されたミニモバイルデータ池でも使用することができる。
本研究の目的は、動的メッシュネットワークを形成することにより、分散エッジデバイスにおけるコンピューティングリソースの利用を改善することである。
メッシュネットワーク内のノードは、未使用のコンピューティングリソースを持つ別のノードと計算タスクを共有する。
提案手法は,エンティティ間のデータ転送の最小化を実現する。
提案したAirDnDビジョンは、近辺の車両から重要な計算結果を収集し、その知覚を高めるために、「角を見回す」ことで知られる交差点に接近する自動運転車に関する現実的なシナリオに適用される。
提案手法は, 地理的に分散したエッジデバイスを生物に変換する3つのモデルから構成される。
関連論文リスト
- Bringing AI to the edge: A formal M&S specification to deploy effective
IoT architectures [0.0]
モノのインターネットは私たちの社会を変え、生活の質と資源管理を改善する新しいサービスを提供しています。
これらのアプリケーションは、限られたコンピューティングリソースとパワーを持つ、複数の分散デバイスのユビキタスネットワークに基づいている。
フォグコンピューティングのような新しいアーキテクチャが登場し、コンピューティング基盤をデータソースに近づけている。
論文 参考訳(メタデータ) (2023-05-11T21:29:58Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Multi-Agent Deep Reinforcement Learning enabled Computation Resource
Allocation in a Vehicular Cloud Network [30.736512922808362]
本稿では,分散アドホック車載ネットワークにおける中央集権的なインフラサポートのない計算資源配分問題について検討する。
VCNにおける真の中央制御ユニットの欠如というジレンマを克服するため、車両上での割り当てを分散的に完了する。
論文 参考訳(メタデータ) (2020-08-14T17:02:24Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Federated Learning with Cooperating Devices: A Consensus Approach for
Massive IoT Networks [8.456633924613456]
分散システムにおける機械学習モデルをトレーニングするための新しいパラダイムとして、フェデレートラーニング(FL)が登場している。
提案するFLアルゴリズムは,ネットワーク内のデータ操作を行うデバイスとの協調を利用して,完全に分散された(あるいはサーバレス)学習手法を提案する。
このアプローチは、分散接続とコンピューティングを特徴とするネットワークを超えて、5G 内で FL を統合するための基盤となる。
論文 参考訳(メタデータ) (2019-12-27T15:16:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。