Automated Label Unification for Multi-Dataset Semantic Segmentation with GNNs
- URL: http://arxiv.org/abs/2407.10534v2
- Date: Wed, 28 Aug 2024 11:12:35 GMT
- Title: Automated Label Unification for Multi-Dataset Semantic Segmentation with GNNs
- Authors: Rong Ma, Jie Chen, Xiangyang Xue, Jian Pu,
- Abstract summary: We propose a novel approach to automatically construct a unified label space across multiple datasets using graph neural networks.
Unlike existing methods, our approach facilitates seamless training without the need for additional manual reannotation or taxonomy reconciliation.
- Score: 48.406728896785296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep supervised models possess significant capability to assimilate extensive training data, thereby presenting an opportunity to enhance model performance through training on multiple datasets. However, conflicts arising from different label spaces among datasets may adversely affect model performance. In this paper, we propose a novel approach to automatically construct a unified label space across multiple datasets using graph neural networks. This enables semantic segmentation models to be trained simultaneously on multiple datasets, resulting in performance improvements. Unlike existing methods, our approach facilitates seamless training without the need for additional manual reannotation or taxonomy reconciliation. This significantly enhances the efficiency and effectiveness of multi-dataset segmentation model training. The results demonstrate that our method significantly outperforms other multi-dataset training methods when trained on seven datasets simultaneously, and achieves state-of-the-art performance on the WildDash 2 benchmark.
Related papers
- Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
We introduce a self-evolving mechanism that allows the model itself to actively sample subsets that are equally or even more effective.
The key to our data sampling technique lies in the enhancement of diversity in the chosen subsets.
Extensive experiments across three datasets and benchmarks demonstrate the effectiveness of DiverseEvol.
arXiv Detail & Related papers (2023-11-14T14:10:40Z) - Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training [44.790636524264]
Point Prompt Training is a novel framework for multi-dataset synergistic learning in the context of 3D representation learning.
It can overcome the negative transfer associated with synergistic learning and produce generalizable representations.
It achieves state-of-the-art performance on each dataset using a single weight-shared model with supervised multi-dataset training.
arXiv Detail & Related papers (2023-08-18T17:59:57Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Learning Semantic Segmentation from Multiple Datasets with Label Shifts [101.24334184653355]
This paper proposes UniSeg, an effective approach to automatically train models across multiple datasets with differing label spaces.
Specifically, we propose two losses that account for conflicting and co-occurring labels to achieve better generalization performance in unseen domains.
arXiv Detail & Related papers (2022-02-28T18:55:19Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
We present MSeg, a composite dataset that unifies semantic segmentation datasets from different domains.
We reconcile the generalization and bring the pixel-level annotations into alignment by relabeling more than 220,000 object masks in more than 80,000 images.
A model trained on MSeg ranks first on the WildDash-v1 leaderboard for robust semantic segmentation, with no exposure to WildDash data during training.
arXiv Detail & Related papers (2021-12-27T16:16:35Z) - Model Composition: Can Multiple Neural Networks Be Combined into a
Single Network Using Only Unlabeled Data? [6.0945220518329855]
This paper investigates the idea of combining multiple trained neural networks using unlabeled data.
To this end, the proposed method makes use of generation, filtering, and aggregation of reliable pseudo-labels collected from unlabeled data.
Our method supports using an arbitrary number of input models with arbitrary architectures and categories.
arXiv Detail & Related papers (2021-10-20T04:17:25Z) - Label-Efficient Multi-Task Segmentation using Contrastive Learning [0.966840768820136]
We propose a multi-task segmentation model with a contrastive learning based subtask and compare its performance with other multi-task models.
We experimentally show that our proposed method outperforms other multi-task methods including the state-of-the-art fully supervised model when the amount of annotated data is limited.
arXiv Detail & Related papers (2020-09-23T14:12:17Z) - Noisy Student Training using Body Language Dataset Improves Facial
Expression Recognition [10.529781894367877]
In this paper, we use a self-training method that utilizes a combination of a labelled dataset and an unlabelled dataset.
Experimental analysis shows that training a noisy student network iteratively helps in achieving significantly better results.
Our results show that the proposed method achieves state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-08-06T13:45:52Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
We show that we can obtain state-of-the-art results using a semi-supervised approach, specifically a self-training paradigm.
We first train a teacher model on labeled data, and then generate pseudo labels on a large set of unlabeled data.
Our robust training framework can digest human-annotated and pseudo labels jointly and achieve top performances on Cityscapes, CamVid and KITTI datasets.
arXiv Detail & Related papers (2020-04-30T17:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.