Noisy Student Training using Body Language Dataset Improves Facial
Expression Recognition
- URL: http://arxiv.org/abs/2008.02655v2
- Date: Wed, 24 Feb 2021 19:11:20 GMT
- Title: Noisy Student Training using Body Language Dataset Improves Facial
Expression Recognition
- Authors: Vikas Kumar, Shivansh Rao, Li Yu
- Abstract summary: In this paper, we use a self-training method that utilizes a combination of a labelled dataset and an unlabelled dataset.
Experimental analysis shows that training a noisy student network iteratively helps in achieving significantly better results.
Our results show that the proposed method achieves state-of-the-art performance on benchmark datasets.
- Score: 10.529781894367877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Facial expression recognition from videos in the wild is a challenging task
due to the lack of abundant labelled training data. Large DNN (deep neural
network) architectures and ensemble methods have resulted in better
performance, but soon reach saturation at some point due to data inadequacy. In
this paper, we use a self-training method that utilizes a combination of a
labelled dataset and an unlabelled dataset (Body Language Dataset - BoLD).
Experimental analysis shows that training a noisy student network iteratively
helps in achieving significantly better results. Additionally, our model
isolates different regions of the face and processes them independently using a
multi-level attention mechanism which further boosts the performance. Our
results show that the proposed method achieves state-of-the-art performance on
benchmark datasets CK+ and AFEW 8.0 when compared to other single models.
Related papers
- How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - Automated Label Unification for Multi-Dataset Semantic Segmentation with GNNs [48.406728896785296]
We propose a novel approach to automatically construct a unified label space across multiple datasets using graph neural networks.
Unlike existing methods, our approach facilitates seamless training without the need for additional manual reannotation or taxonomy reconciliation.
arXiv Detail & Related papers (2024-07-15T08:42:10Z) - Noisy Self-Training with Synthetic Queries for Dense Retrieval [49.49928764695172]
We introduce a novel noisy self-training framework combined with synthetic queries.
Experimental results show that our method improves consistently over existing methods.
Our method is data efficient and outperforms competitive baselines.
arXiv Detail & Related papers (2023-11-27T06:19:50Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - Improving Learning Effectiveness For Object Detection and Classification
in Cluttered Backgrounds [6.729108277517129]
This paper develops a framework that permits to autonomously generate a training dataset in heterogeneous cluttered backgrounds.
It is clear that the learning effectiveness of the proposed framework should be improved in complex and heterogeneous environments.
The performance of the proposed framework is investigated through empirical tests and compared with that of the model trained with the COCO dataset.
arXiv Detail & Related papers (2020-02-27T22:28:48Z) - Deep Multi-Facial Patches Aggregation Network For Facial Expression
Recognition [5.735035463793008]
We propose an approach for Facial Expressions Recognition (FER) based on a deep multi-facial patches aggregation network.
Deep features are learned from facial patches using deep sub-networks and aggregated within one deep architecture for expression classification.
arXiv Detail & Related papers (2020-02-20T17:57:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.