Beyond Generative Artificial Intelligence: Roadmap for Natural Language Generation
- URL: http://arxiv.org/abs/2407.10554v1
- Date: Mon, 15 Jul 2024 09:07:07 GMT
- Title: Beyond Generative Artificial Intelligence: Roadmap for Natural Language Generation
- Authors: María Miró Maestre, Iván Martínez-Murillo, Tania J. Martin, Borja Navarro-Colorado, Antonio Ferrández, Armando Suárez Cueto, Elena Lloret,
- Abstract summary: This paper focuses on the field of Natural Language Processing (NLP) and its subfield Natural Language Generation (NLG)
Within the growing LLM family are the popular GPT-4, Bard and more specifically, tools such as ChatGPT.
This scenario poses new questions about the next steps for NLG and how the field can adapt and evolve to deal with new challenges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Artificial Intelligence has grown exponentially as a result of Large Language Models (LLMs). This has been possible because of the impressive performance of deep learning methods created within the field of Natural Language Processing (NLP) and its subfield Natural Language Generation (NLG), which is the focus of this paper. Within the growing LLM family are the popular GPT-4, Bard and more specifically, tools such as ChatGPT have become a benchmark for other LLMs when solving most of the tasks involved in NLG research. This scenario poses new questions about the next steps for NLG and how the field can adapt and evolve to deal with new challenges in the era of LLMs. To address this, the present paper conducts a review of a representative sample of surveys recently published in NLG. By doing so, we aim to provide the scientific community with a research roadmap to identify which NLG aspects are still not suitably addressed by LLMs, as well as suggest future lines of research that should be addressed going forward.
Related papers
- Large Language Models Meet NLP: A Survey [79.74450825763851]
Large language models (LLMs) have shown impressive capabilities in Natural Language Processing (NLP) tasks.
This study aims to address this gap by exploring the following questions.
arXiv Detail & Related papers (2024-05-21T14:24:01Z) - ChatGPT Alternative Solutions: Large Language Models Survey [0.0]
Large Language Models (LLMs) have ignited a surge in research contributions within this domain.
Recent years have witnessed a dynamic synergy between academia and industry, propelling the field of LLM research to new heights.
This survey furnishes a well-rounded perspective on the current state of generative AI, shedding light on opportunities for further exploration, enhancement, and innovation.
arXiv Detail & Related papers (2024-03-21T15:16:50Z) - Large Language Models: A Survey [69.72787936480394]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.
LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - A Survey on Prompting Techniques in LLMs [0.0]
Autoregressive Large Language Models have transformed the landscape of Natural Language Processing.
We present a taxonomy of existing literature on prompting techniques and provide a concise survey based on this taxonomy.
We identify some open problems in the realm of prompting in autoregressive LLMs which could serve as a direction for future research.
arXiv Detail & Related papers (2023-11-28T17:56:34Z) - Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models [49.74036826946397]
This study investigates constrained text generation for large language models (LLMs)
Our research mainly focuses on mainstream open-source LLMs, categorizing constraints into lexical, structural, and relation-based types.
Results illuminate LLMs' capacity and deficiency to incorporate constraints and provide insights for future developments in constrained text generation.
arXiv Detail & Related papers (2023-10-25T03:58:49Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - A Bibliometric Review of Large Language Models Research from 2017 to
2023 [1.4190701053683017]
Large language models (LLMs) are language models that have demonstrated outstanding performance across a range of natural language processing (NLP) tasks.
This paper serves as a roadmap for researchers, practitioners, and policymakers to navigate the current landscape of LLMs research.
arXiv Detail & Related papers (2023-04-03T21:46:41Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
We present a comprehensive review of Knowledge Enhanced Pre-trained Language Models (KE-PLMs)
For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG) and rule knowledge.
The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods.
arXiv Detail & Related papers (2022-11-11T04:29:02Z) - Knowledge Enhanced Pretrained Language Models: A Compreshensive Survey [8.427521246916463]
Pretrained Language Models (PLM) have established a new paradigm through learning informative representations on large-scale text corpus.
This new paradigm has revolutionized the entire field of natural language processing, and set the new state-of-the-art performance for a wide variety of NLP tasks.
To address this issue, integrating knowledge into PLMs have recently become a very active research area and a variety of approaches have been developed.
arXiv Detail & Related papers (2021-10-16T03:27:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.